期刊文献+

基于局部邻域约束的空间验证方法 被引量:1

Spatial verification method based on local regional constraint
下载PDF
导出
摘要 提出了用基于局部邻域约束的空间验证方法去验证错误的匹配特征。首先,计算匹配特征对的局部邻域范围,根据局部邻域内相关匹配特征对的数量定义该匹配对的局部邻域约束值,并判断是否满足局部邻域的约束条件。若满足,则基于局部邻域内的所有相关匹配特征的排列顺序,验证其是否满足一致的几何变换关系。实验结果表明:SVLRC方法具有较低的时间复杂度,改善了最终检索结果的精确度。 A Spatial Verification method based on Local Regional Constraints(SVLRC)is developed to remove false positive matches.First,the local region range of a center match pair is calculated.Then,the constraint value of the centre matches is defined according to the number of other matches in the local regions and whether the center match pairs satisfy the condition of local region constraint is judged.If the condition is met,whether all the matches in the local regions follow consistent geometric transformation is estimated based on geometric order.Extensive experiments demonstrate that the SVLRC can improve the retrieval accuracy significantly with low computation cost.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第1期265-270,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61101155) 吉林省自然科学基金项目(201215045 20140101184JC)
关键词 计算机应用 图像检索 BAG of Words模型 局部邻域 空间约束 后验证 computer application image retrieval Bag of Words model local regions spatial constraint post-processing
  • 相关文献

参考文献12

  • 1Zheng L, Wang S, Zhou W, et al. Bayes merging of multiple vocabularies for scalable image retrieva[C] //IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014 : 1963-1970.
  • 2赵宏伟,李清亮,刘萍萍.基于分级显著信息的空间编码方法[J].电子学报,2014,42(9):1863-1867. 被引量:5
  • 3Sivic J, Zisserman A. Video Google: A text retriev- al approaeh to object matching in videos[C] ffPro- eeedings of 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 1470-1477.
  • 4Fisehler M A, Bolles R C. Random sample consen-sus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381-395.
  • 5Jegou H, Douze M, Schmid C. Hamming embed- ding and weak geometric consistency for large scale image search[C] //Proceedings of the 2008 10th IEEE European Conference on Computer Vision. Marseille, France : IEEE, 2008 : 304-317.
  • 6Tsai S S, Chen D, Takacs G, et al. Fast geometric re-ranking for image-based retrieval[C]//Proceed- ings of the 2010 IEEE International Conference on Image Processing. Hong Kong: IEEE, 2010: 1029- 1032.
  • 7Zhao H, Li Q, Liu P. Hierarchical geometry verifi- cation via maximum entropy saliency in image re- trieval[J]. Entropy,2014,16(7) .. 3848-3865.
  • 8Zhou W, Li H, Lu Y, et al. Sift match verification by geometric coding for large-scale partial-duplicate web image search[J]. ACM Transactions on Multi- media Computing, Communications, and ApPlica- tions (TOMCCAP), 2013,9(1) :1-18.
  • 9Xie H, Gao K, Zhang Y, et al. Local geometric consistency constraint for image retrieval[C]//Pro- ceedings of the 2011 18th IEEE International Con ference on Image Processing. Brussels, Belgium: IEEE, 2011 : 101-104.
  • 10https://dl, dropboxusercontent, corn/u/42311725/.DupGroundTruthDataset. rar [ DB/OL], 2014 07- 10.

二级参考文献18

  • 1Zheng L, Wang S, Zhou W, Tian Q. Bayes merging of multiple vocabularies for scalable image retaieval[A]. Proceedings of the 2014 IEEE International Conference on Computer Vision and Pattern Recognition [C]. Columbus, OH, USA: IEEE, 2014. 4321 - 4328.
  • 2Sivic J, Zisserman A. Video Google:A text retrieval approach to object matching in videos[A]. Proceedings of the 2003 9th IEEE Intemational Conference on Computer Vision[C]. Nice, France: IEEE,2003.1470 - 1477.
  • 3Lowe D G. Distinctive image features from scale-invariant key- points[J]. International Journal of Computer Vision, 2004, 60 (2) :91 - 110.
  • 4Lazebnik S, Schmid C,Ponce J. Beyond bags of features: Spa- tial pyramid matching for recognizing natural scene categories[A]. Proceedings of the 2006 mEE Computer Society Confer- ence on Computer Vision and Pattern Recognition Workshops [C] .New York, NY, USA: IF.F.E, 2006.2169 - 2178.
  • 5Wu Z, Ke Q, Isard M, Sun J. Bundling features for large scale partial-duplicate web image search [A]. Proceedings of the 2009 mEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops [C]. Miami, FL, USA: IEEE,2009.25- 32.
  • 6Hu S. Region-based partial-duplicate image retrieval[A]. Pro- ceedings of the 2012 International Conference on Industrial Control and Electronics Engineering[C]. Xi' an, China: IEEE, 2012. 1521 - 1524.
  • 7Perd' och M, Chum O, Matas J. Efficient representation of local geometry for large scale object retrieval[A] .Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops [C]. Miami, FL, USA: IEEE,2009.9 - 16.
  • 8Zhou W,Li H, Lu Y, Tian Q. Large scale image search with geometric coding[A]. Proceedings of the 2011 ACM Multi- media Conference and Co-Located Workshops [C]. Scotts- dale,AZ,USA:ACM,2011.1349 - 1352.
  • 9Xie H, G-ao K, Zlaang Y, Li J. Local geometric consistency constraint for image retrieval[A]. Proceedings of the 2011 18th IEEE International Conference on Image Processing[C]. Brussels, Belgium: IEEE, 2011. 101 - 104.
  • 10Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981,24(6) :381 - 395.

共引文献4

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部