期刊文献+

一种动态赋权红外光谱特征选择算法研究

Study of a Dynamic Weighted Infrared Spectrum Feature Selection Algorithm
下载PDF
导出
摘要 大规模的红外光谱数据集中存在大量无关冗余的特征。针对这一问题,提出了一种动态赋权红外光谱特征选择算法(Dynamic Weight Infrared Spectrum Feature Selection Algorithm,MBDWFS)。该算法把对称不确定性度量标准与近似Markov Blanket相结合,以删除原始光谱数据集中无关冗余的特征,从而获取数据规模较小且最优的特征子集。通过与FCBF、ID_3和ReliefF三种经典特征选择算法的性能仿真对比试验,证明所提出的MBDWFS算法在整体分类性能上优于其他三种算法,用于红外光谱的物质分析领域时效果更好。 There exist a large number of irrelevant and redundant features in large-scMe infrared spec- trum datasets. To solve this problem, a dynamic weighted infrared spectrum feature selection algorithm (MBDWFS) is proposed. The algorithm deletes the irrelevant and redundant features in an original spec- trum dataset by combining the symmetric uncertainty metrics with Markov Blanket. Then, a smMler scale optimal feature subset is obtained. By comparison with three classical feature selection algorithms FCBF, ID3 and ReliefF, it shows that the proposed MBDWFS algorithm is better than the above three algorithms in overall classification performance and is more suitable to be used in the field of materiM infrared spectrum analysis.
出处 《红外》 CAS 2016年第1期40-44,共5页 Infrared
基金 国家重点实验室基金(9140C12031150C12057)
关键词 特征选择 MARKOV BLANKET 动态赋权 feature selection Markov Blanket dynamic weight
  • 相关文献

参考文献6

  • 1Zhang Y S,Zhang Z G,Liu K J,et al. An Improve Algorithm for Markov Blanket Discovery[J].Journal of Computers,2010, 5(11):1755-1761.
  • 2Hall M A. Correlation-based Feature Selection for Discrete and Numeric Class Machine Learn- ing[C]//Proceedings of the 7th International Con-ference on Machine Learning, Los Altos: Morgan Kaufmann,2000,359-366.
  • 3毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 4王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 5Sotoca J, Pla F. Supervised Feature Selec- tion by Clustering Using Conditional Mu- tual Information Based Distances[J].Pattern Recognition,2010,43(6):2068-2081.
  • 6Yu L, Liu H. Efficient Feature Selection via Analysis of Relevance and Redundancy[J].Journal of Machine Learning Research,2004,5 (12):1205-1224.

二级参考文献83

  • 1钱忠良,王文军.不变矩目标特征描述误差分析和基于上层建筑不变矩的舰船识别[J].电子测量与仪器学报,1994,8(3):23-31. 被引量:4
  • 2H Liu,R Setiono. A Probabilistic Approach to Feature Selection: A filter Solution [A]. Proc of Int' 1 Conf on Machine Learning[C]. 1995. 319-327.
  • 3B Chakraboriy. Genetic Algorithm with Fuzzy Fitness Function for Feature Selection[A]. Proc of the 2002 IEEE International Symp on Industrial Electronics. Vol 1[C]. 2002. 315 - 319.
  • 4Jos Bins,Bruce A Draper. Feature Selection from Huge Feature Sets[A]. Proc of the 8th IEEE Conf on Computer Vision and Pattern Recognition. Vol 2[C]. 2001. 159-165.
  • 5Sanmay Das. Filters,Wrappers and a Boosting Based Hybrid for Feature Selection[A]. Proc of the 8th Int'l Conf on Machine Lemrning[C]. 2001.74-81.
  • 6Huang Yuan, Shian-Shyong Tseng, Wu Gangshan, et al. A Two-Phase Feature Selection Method Using Both Filter and Wrapper[A]. Proc of 1999 IEEE Inter'l Conf on Systems,Man, and Cybernetics. Vol 2[C]. 1999. 132 - 136.
  • 7R Kohavi,G H John. Wrappers for Feature Subset Selection[J]. Artificial Intelligence Journal, 1997,97(1-2) : 273-324.
  • 8Solberg A H S,Jain A K. Texture Fusion and Feature Selection Applied to SAR Imagery[J], IEEE Trans on Geoscience and Remote Sensing, 1997,35(2) : 475-479.
  • 9Sylvie Le Hegarat-Mascle, Isabelle Bloch,et al. Application of Dempster-Shafer Evidence Theory to Unsupervised Classification in Multi-Source Remote Sensing[J]. IEEE Trans on Geoscience and Remote Sensing, 1997,35(4): 1018-1031.
  • 10Kari Torkkola, Nonlinear Feature Transforms Using Maximum Mutual Information[A], Proc IJCNN[C]. 2001. 2756-2761.

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部