期刊文献+

基于移动激光扫描点云数据和遥感图像的建筑物三维模型快速建模方法 被引量:18

A Method for Fast Modeling of 3D Buildings from Mobile Laser Scanning Point Clouds and Remote Sensing Data
下载PDF
导出
摘要 建筑物的三维建模是城市三维建模和可视化的重要组成部分。本文提出一种基于点云数据与遥感图像的建筑物三维模型快速建模方法。首先,运用改进的RANSAC法从点云数据中提取建筑立面,根据立面区分平顶建筑与人字形屋顶建筑;在此基础上,进一步对建筑物的高度进行提取;之后,利用区域增长法从遥感图像中提取建筑物屋顶轮廓,利用形态学方法对提取出的轮廓进行规则化处理,并基于Freeman链码提取轮廓角点,得到规整的轮廓;最后,根据提取出的建筑高度属性对屋顶轮廓拉伸并进行纹理映射,实现对建筑物的三维重建。通过实例证明,提出的方法能快速、高效地实现建筑物三维模型的重建。 A model is an abstraction of an entity object. Modeling three dimensional (3D) buildings is an important component of urban 3D modelling and visualization. This paper presents a new method for fast modeling of 3D buildings based on mobile laser scanning (MLS) point clouds and remote sensing images. First, buildings facades are extracted from original MLS point clouds data by using adapted RANSAC method, and are further classified into gable roof and plane roof. The heights of different types of buildings are determined. Next, the footprints and roofs of buildings are delineated from remote sensing image by using region growing method and morphological processes. The angular points, which can be used to represent the shape of the building roofs accurately, are identified from building roofs by using Freeman chaining coding algorithm. Finally, the 3 D building models are reconstructed after extruding the building footprint with building heights and mapping texture into corresponding facades. The method is proved to be effective and efficient through a case application.
出处 《测绘与空间地理信息》 2016年第1期24-27,34,共5页 Geomatics & Spatial Information Technology
基金 国家自然科学基金项目(41471449) 上海市自然科学基金项目(14ZR1412200) 中央高校基本科研业务费专项资金项目(14ZR1412200)资助
关键词 移动激光扫描 立面提取 三维建模 RANSAC mobile laser scanning facade extraction three -dimensional modeling RANSAC
  • 相关文献

参考文献16

  • 1隋刚,刘国栋,张锦.CSG方法在建筑物三维建模中的应用研究[J].太原理工大学学报,2003,34(6):691-693. 被引量:14
  • 2吴宾,余柏蒗,岳文辉,谈文琦,胡春凌,吴健平.一种基于车载激光扫描点云数据的单株行道树信息提取方法[J].华东师范大学学报(自然科学版),2013(2):38-49. 被引量:51
  • 3Wu B,Yu B,Yue W,et al. A Vuxel- Based Method for Automated Identification and Morphological Parameters Es- timation of Individual Street Trees from Mobile 1,aser Scan- ning Data[ J ]. Remote Sensing,2013,5 ( 2 ) :584 - 611.
  • 4Taylor R W, Savini M, Reeves A P. Fast segmentation of range imagei7 into planar regions [ J]. Computer ~'ision, Graphics, and Image Processing, 1989, 45 ( 1 ) : 42 -60.
  • 5Roggero M. Object segmentation with region growing and principal component analysis [ J ]. The International Ar- chives of Photometry, Remote Sensing and Spatial Infi~r- mation Sciences, 2002, 34 (Part 3A) : 289 -294.
  • 6Filin S. Surfhce clustering from airborne laser scanning data [J ]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002, 34 (Part3A):l17-124.
  • 7Filin S, Pfeifer N. Segmentation of airborqe laser scanning data using a slope adaptive neighborhood [ J ]. lsprs Jour- nal of Photogrammetry and Remote Sensing, 2005, 60 (2) :71 -80.
  • 8Liu R, Hirzinger G. Marker - free Automatic Matching of Range Data [ C] //Panoramic Phologrammetry Workshop, proceedings of the 1SPRS working group V/5, Berlin ( 2005 ).
  • 9Melzer T. Non - parametric segmentaticm of AI,S point clouds using mean shift[J].Journal of Applied Ge~,desy, 2007, 1 (3): 159-170.
  • 10Hoffman R, Jain A K. Segmentation and classification of range images [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5) : 608 -20.

二级参考文献66

共引文献148

同被引文献165

引证文献18

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部