期刊文献+

一种改进的IVT目标跟踪算法 被引量:6

An Improved IVT Algorithm for Object Tracking
原文传递
导出
摘要 针对增量视觉跟踪(IVT)算法无法对受遮挡目标进行有效跟踪的问题,提出了一种改进的IVT目标跟踪算法。该算法对IVT算法中目标外观模型表示单一的问题进行了改进,对目标外观采用混合表示方法。若目标未被遮挡则使用增量主成分分析与高斯观测噪声进行表示,反之则使用连续均匀概率分布进行表示,对混合模型进行能量最小化求解来实现对目标的跟踪。实验结果表明,该算法在跟踪过程中具有较好的抗遮挡性能,同时能够实现对目标的实时跟踪。 Aiming at the problem that the occlusion interference of unable tracking object effectively in incremental visual tracking (IVT) algorithm, an improved IVT target tracking algorithm is proposed. The problem of a single target appearance model in the IVT algorithm is solved and a hybrid representation method is adopted to represent the target appearance. If the target is not blocked, using the incremental principal component analysis and Gaussian observing noise to represent, otherwise using the continuous uniform probability distribution to represent. The energy minimization method is implemented for mixed model target tracking. Experimental results show that the proposed algorithm has the better ability of anti-occlusion interference during object tracking and it can realize real-time tracking of targets at the same time.
出处 《激光与光电子学进展》 CSCD 北大核心 2016年第1期101-106,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(41306089) 江苏省产学研前瞻性研究项目(BY2014041) 常州市科技支撑项目(CE20145038)
关键词 图像处理 目标跟踪 抗遮挡 增量视觉跟踪 增量主成分分析 image processing object tracking anti-occlusion interference incremental visual tracking incremental principal component analysis
  • 相关文献

参考文献20

二级参考文献66

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2彭晓东,周泗忠,刘波,唐惠君,闫闵奇.惯量椭圆法在单站光测目标三维姿态测量中的应用[J].光子学报,2007,36(3):568-573. 被引量:6
  • 3王长军,朱善安.基于Mean Shift的目标平移与旋转跟踪[J].中国图象图形学报,2007,12(8):1367-1371. 被引量:10
  • 4R M Sova, J E Sluz, D W Young, et al.. 80 Gb/s free-space optical communication demonstration between an aerostat and a ground terminal[C]. SPIE, 2006, 6304: 630414.
  • 5T Nielsen, G Oppenhuser. In-orbit test result of an operational inter-satellite link between ARTEMIS and SPOT-4, SILEX[C]. SPIE, 2002, 4635: 1-15.
  • 6M Gregory, F Heine, H Kmpfner, et al.. Commercial optical inter-satellite communication at high data rates[J]. Opt Eng, 2012, 53(3): 031202.
  • 7A Shrestha, M Brechtelsbauer. Transportable optical ground station for high-speed free-space laser communication[C]. SPIE, 2012, 8517: 851706.
  • 8W L Saw, H H Refai, J J Sluss. Free space optical alignment system using GPS[C]. SPIE, 2005, 5712: 571226.
  • 9Kalman R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
  • 10Yang C, Duraiswami R, Davis L. Efficient mean-shift tracking via a new similarity measure [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. 1: 176-183.

共引文献65

同被引文献36

  • 1杨丽娟,张白桦,叶旭桢.快速傅里叶变换FFT及其应用[J].光电工程,2004,31(B12):1-3. 被引量:98
  • 2段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:373
  • 3Yilmaz A, Javed O, Shah M. Object tracking: A survey[J]. Acre Computing Surveys, 2006, 38(4) : 81-93.
  • 4Kristan M, Matas J, Leonardis A, et al. The visual object tracking VOT2015 challenge results [C]. 2015 IEEE International Conference on Computer Vision Workshop, 2015 : 564-586.
  • 5Casasent D. Unified synthetic discriminant function computational formulation[J]. Applied Optics, 1984, 23(10) : 1620- 1627.
  • 6Kristan M, Pflugfelder R, Leonardis A, et al. The visual object tracking VOT2014 challenge results [M] Visio-ECCV 2014.
  • 7Bolme D S, Beveridge J R, Draper B, et al. Visual object tracking using adaptive correlation filters [C] 2010 IEEE Conference on Computer Vision and Pattern Recognition, 2010 : 2544-2550.
  • 8Danelljan M, Khan F S, Felsberg M, et al. Adaptive color attributes for real-time visual tracking [C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014 : 1090-1097.
  • 9Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[M]. Computer Vision-ECCV 2012, Berlin: Springer Berlin Heidelberg, 2012, 7575: 702-715.
  • 10Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2014, 37(3) : 583-596.

引证文献6

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部