期刊文献+

基于光纤链路传输的远程超宽带混沌成像雷达 被引量:9

Ultra-Wideband Remote Chaotic Imaging Radar over Fiber Links
原文传递
导出
摘要 提出了一种基于光纤链路传输的远程超宽带混沌成像雷达系统。该系统包括中心站、光纤传输链路和基站。在中心站,改进型Colpitts振荡器产生超宽带混沌信号,经上变频后作为雷达探测信号。探测信号通过激光器的外调制技术转换为相应的光信号,经光纤链路传输到基站并转换为相应电信号,由宽带天线发射。目标物反射的回波信号经电光转换和下变频在中心站被采集。利用相关运算和后向投影算法,中心站可实现对目标物的二维空间成像。实验结果表明,该系统经过10 km光纤传输后可对单个和多个目标物进行远程成像。成像的距离分辨率和方位分辨率分别为6 cm和8 cm。 A remote imaging radar system based on ultra-wideband chaotic signal generation and radio over fiber is proposed and demonstrated experimentally. The radar system consists of a central station, optical fiber links and a base station. At the central station, an ultra-wideband chaotic signal is generated by an improved Colpitts oscillator and then is up-converted as a probe signal. The probe signal is converted into an optical signal by using the external modulation technique of laser diode. Optical fiber links are used to transport optical signals to the remote base station or back to the central station. At the base station, the optical signal is transformed into the microwave signal and then transmitted by a horn antenna. At the receiving end, the echo signal from a target is converted to be in optical domain and then transported to the central station, where it is collected after optical-to-electrical conversion and down conversion. The target imaging is obtained by utilizing the correlation method and back projection algorithm. Experimental results show that the proposed radar system can achieve remote imaging for single and multiple free-space targets with a distance of 10 km. The range resolution of 6 cm and the azimuth resolution of 8 cm are obtained, respectively.
出处 《中国激光》 EI CAS CSCD 北大核心 2016年第1期205-212,共8页 Chinese Journal of Lasers
基金 国家自然科学基金(61240017) 国家自然科学基金青年科学基金(51404165 61401299) 山西省自然科学基金(2013011019-3) 教育部博士点新教师类基金(20121402120019) 太原理工大学新增团队成员项目(2014TD065)
关键词 遥感 超宽带混沌雷达 远程成像 相关算法 后向投影算法 Colpitts振荡器 remote sensing ultra-wideband chaotic radar remote imaging correlation method back projectionalgorithm Colpitts oscillator
  • 相关文献

参考文献28

  • 1Sun Hongbo, Lu Yilong, Liu Guosui. Ultra-wideband technology and random signal radar: An ideal combination[J]. IEEE Aerospace and Electronic Systems Magazine, 2003, 18(11): 3-7.
  • 2Lin Fanyi, Liu Jiaming. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 2004, 40(6): 815-820.
  • 3Narayanan Ram M. Through-wall radar imaging using UWB noise waveforms[J]. Journal of the Franklin Institute, 2008, 345(6): 659- 678.
  • 4Lai Cchienping, Narayanan Ram M. Uhra-wideband random noise radar design for through-wall surveillance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1716-1730.
  • 5Xu Xiaojian, Narayanan Ram M. FOPEN SAR imaging using UWB step-frequency and random noise waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1287-1300.
  • 6Sachs J, Peyerl P, Zetik R, et al: M-sequence uhra-wideband-radar: State of development and applications[C]. IEEE Proceedings of the International Radar Conference, 2003: 224-229.
  • 7Aftanas Michal, Zaikov Egor, Drutarovsky Milos, et al: Throughwall imaging of the objects scanned by M-sequence UWB radar system [C]. IEEE 18th International Conference Radioelektronika, 2008: 1-4.
  • 8Grodensky Daniel, Kravitz Daniel, Zadok Avi. Uhra-wideband microwave-photonic noise radar based on optical waveform generation [J]. IEEE Photonics Technology Letters, 2012, 24(10): 839-841.
  • 9Zheng Jianyu, Wang Hui, Fu Jianbin, et al: Fiber-distributed ultra-wideband noise radar with steerable power spectrum and colorless base station[J]. Opt Express, 2014, 22(5): 4896-4907.
  • 10Jiang T, Long J, Wang Z, et al: Experimental investigation of a direct chaotic signal Electromagnetic Waves and Applications, 2010, 24(8-9): 1229-1239.

二级参考文献82

  • 1王安帮,王云才.混沌激光相关法光时域反射测量技术[J].中国科学:信息科学,2010,40(3):512-518. 被引量:9
  • 2M. K. Barnoski, S. M. Jensen. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Appl. Opt. , 1976, 15(9): 2112-2115.
  • 3P. Healey, P. Hensel. Optical time domain reflectometry by photon-counting[J]. Electron. Lett., 1980, 16(16): 631-633.
  • 4M. Wegmuller, F. Scholder, N. Gisin. Photon-counting OTDR for local birefringence and fault analysis in the metro environment [J]. J. Lightwave Technol. , 2004, 22(2): 390-400.
  • 5Junhui Hu, Qingyuan Zhao. Photon-counting optical time- domain refleetometry using a superconducting nanowire single- photon detector[J]. J. Lightvoave Technol. , 2012, 30 (16) : 2583-2588.
  • 6P. Healey. Fading in heterodyne OTDR[J]. Electron. Lett. , 1984, 20(1): 30--32.
  • 7H. Izumita, Y. Koyamada, S. Furukawa et al.. Stochastic amplitude fluctuation in coherent OTDR and a new technique for its reduction by stimulating synchronous optical frequency hopping[J]. J. Lightwave Technol., 1997, 15(2): 267-278.
  • 8Lidong Lu, Yuejiang Song, Fan Zhu et al,. Coherent optical time domain reflectometry using three frequency multiplexing probe [J]. Opt. Laser Eng., 2012, 50(12): 1735-1739.
  • 9K. Takada, M. Shimizu, M. Horiguchi et al.. Ultrahigh- sensitivity low coherence OTDR using Er3+-doped high-power superfluorescent fiber source[J]. Electron. Lett. , 1992, 28 (1) : 29-31.
  • 10W. V. Sorin, D. M. Baney. A simple intensity noise reduction technique for optical low-coherence reflectometry [J]. IEEE Photon. Technol. Lett. , 1992, 4(12): 1404-1406.

共引文献19

同被引文献104

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部