期刊文献+

Heston模型下保险公司与再保险公司的博弈 被引量:9

A Game between Insurer and Reinsurer under the Heston Model
下载PDF
导出
摘要 本文同时考虑保险公司和再保险公司的最优投资问题.假设保险公司可以向再保险公司购买比例再保险,保险公司和再保险公司都可以投资于一种无风险资产和一种价格过程服从Heston模型的风险资产.首先,在保险公司和再保险公司终端财富的指数效用期望最大化条件下建立目标函数;然后通过求解Hamilton-Jacobi-Bellman方程,分别得到了保险公司与再保险公司的最优投资和再保险策略以及最优价值函数的解析解;最后通过数值实例以及敏感性分析阐述了本文所得结果. This paper considers an optimal investment problem for both insurer and reinsurer. The insurer is allowed to purchase proportional reinsurance and both the insurer and reinsurer are allowed to invest in a risk-free asset and a risky asset whose price process satisfies the Heston's stochastic volatility model. Firstly, we establish the objective function in the sense of maximizing the exponential utility of both the insurer and reinsurer on terminal wealth; Secondly, by solving the Hamilton-Jacobi-Bellman system, the closed-form expressions for the optimal reinsurance and investment strategies and the optimal value function are obtained; Finally, some numerical illustrations and sensitivity analysis for the proposed theoretical results are provided.
机构地区 天津大学理学院
出处 《工程数学学报》 CSCD 北大核心 2016年第1期1-16,共16页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11201335 11301376)~~
关键词 比例再保险 指数效用函数 Heston模型 再保险公司最优投资 proportional reinsurance exponential utility function Heston model optimal investment for reinsurer
  • 相关文献

参考文献15

  • 1Browne S. Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin[J]. Mathematics of Operations Research, 1995, 20(4): 937-958.
  • 2Yang H L, Zhang L H. Optimal investment for insurer with jump-diffusion risk process[J]. Insurance: Mathematics and Economics, 2005, 37(3): 615-634.
  • 3Wang Z W, Xia J M, Zhang L H. Optimal investment for an insurer: the martingale approach[J]. Insurance: Mathematics and Economics, 2007, 40(2): 322-334.
  • 4Bai L H, Guo J Y. Optimal proportional reinsurance and investment with multiple risky assets and no- shorting constraint[J]. Insurance: Mathematics and Economics, 2008, 42(3): 968-975.
  • 5Kaluszka M. Optimal reinsurance under mean-variance premium principles[J]. Insurance: Mathematics and Economics, 2001, 28(1): 61-67.
  • 6H~jgaard B, Taksar M. Optimal proportional reinsurance policies for diffusion models with transaction costs[J]. Insurance: Mathematics and Economics, 1998, 22(1): 41-51.
  • 7Hipp C, Plum M. Optimal investment for insurers[J]. Insurance: Mathematics and Economics, 2000, 27(2): 215-228.
  • 8Cao Y S, Wan N Q. Optimal proportional reinsurance and investment based on Hamilton-Jacobi-Bellman equation[J]. Insurance: Mathematics and Economics, 2009, 45(2): 157-162.
  • 9Zhang X L, Zhang K C, Yu X J. Optimal proportional reinsurance and investment with transaction costs, I: maximizing the terminal wealth[J]. Insurance: Mathematics and Economics, 2009, 44(3): 473-478.
  • 10Cu A L, Guo X P, Li Z F, et al. Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model[J]. Insurance: Mathematics and Economics, 2012, 51(3): 674-684.

同被引文献35

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部