期刊文献+

粘弹流动的间断有限元模拟

Numerical Simulation of Viscoelastic Flows Using Discontinuous Galerkin Finite Element Method
下载PDF
导出
摘要 针对传统有限元法求解Oldroyd-B本构方程时需加入稳定化方案的缺点,本文基于非结构网格给出了统一间断有限元求解框架.该框架包含采用IPDG(interior penalty discontinuous Galerkin)求解质量方程和动量方程,与采用RKDG(RungeKutta discontinuous Galerkin)求解本构方程这两个核心.数值结果表明:该方法在求解Oldroyd-B本构方程时无需加入稳定化方案,实施比有限元法简便,且具有较高的计算精度,可有效地模拟包含应力奇异点的复杂粘弹流动问题,进而揭示非牛顿粘弹流动的基本特征. The traditional finite element method needs to supplement a stabilization scheme to simulate Oldroyd-B viscoelastic flows. To alleviate this issue, a unified discontinuous Galerkin finite element framework based on unstructured grids is proposed in this paper. The system contains two key points: one is using the IPDG (interior penalty discontinuous Galerkin) method to discretize mass and momen-tum equations, and the other is employing the RKDG (Runge- Kutta DG) method to solve the Oldroyd-B constitutive equation. Simulation results reveal the intrinsic characteristics of non-Newtonian viscoelastic fluids and indicate that the approach can effectively overcome the drawback of the traditional finite element method, which redundantly introduces stabilization process in the method. Moreover, these results substantiate that the proposed method is simple to implement, has high accuracy and can be used to simulate complex viscoelastic flows with stress singularity.
出处 《工程数学学报》 CSCD 北大核心 2016年第1期52-62,共11页 Chinese Journal of Engineering Mathematics
基金 国家重点基础研究发展计划(2012CB025903)~~
关键词 间断有限元 非结构 粘弹流体 discontinuous Galerkin unstructured grids viscoelastic flow
  • 相关文献

参考文献2

二级参考文献175

  • 1Zhengfu Xu,Chi-Wang Shu.ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT[J].Journal of Computational Mathematics,2006,24(3):239-251. 被引量:2
  • 2Minion M L. Semi-implicit spectral deferred correction methods for ordinary differential equations [ J]. Communications in Mathematical Sciences, 2003, 1: 471- 500.
  • 3Xia Y, Xu Y, Shu C-W. Efficient time discretization for local discontinuous Galerkin methods [J]. Discrete and Continuous Dynamical Systems-Series B, 2007, 8: 677- 693.
  • 4Strang G. On the construction and comparison of difference schemes [J]. SIAM Journal on Numerical Analysis, 1968, 5: 506- 517.
  • 5Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes,Ⅱ[ J]. Journal of Computational Physics, 1989, 83: 32- 78.
  • 6Jiang G-S, Shu C-W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126: 202- 228.
  • 7Shu C-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[ M]//Cockbum B, Johnson C, Shu C-W, Tadmor E (Editor: A Quarteroni), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, volume 1697, Springer, 1998: 325- 432.
  • 8Roe P. Approximate Riemann solvers, parameter vectors and difference schemes [ J ]. Journal of Computational Physics, 1978, 27 : 1 -31.
  • 9Qiu j-x, Shu C-W. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes [ J]. Journal of Computational Physics, 2002, 183:187 -209.
  • 10Merryman B. Understanding the Shu-Osher conservative finite difference form [ J]. Journal of Scientific Computing, 2003, 19:309 - 322.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部