期刊文献+

基于深度学习的监控视频树叶遮挡检测 被引量:9

Deep learning based approach for detecting leaf occlusion in surveillance videos
下载PDF
导出
摘要 结合稀疏自编码器的自动提取数据特征能力和深度置信网络较好的分类性能,提出一种基于深度学习的监控视频树叶遮挡检测方法。首先从视频中随机选取一帧图像,通过栈式稀疏自编码器主动学习视频图像的特征信息,然后采用深度置信网络建立分类检测模型,最后引入学习速率自适应调整策略对整个神经网络进行微调。该方法不需要对视频连续取帧,具有较好的图像特征主动学习能力,克服了人工提取特征能力有限的缺陷。实验结果表明,在样本量充足的条件下,使用本文方法进行监控视频树叶遮挡检测可以达到88.97%的准确率。 Integrating the advantage of automatic feature extraction by sparse auto-encoder and the good classification performance of deep belief network, this paper proposes a detection approach for leaf occlusion in surveillance videos based on deep learning. Firstly, a frame is randomly selected from the video sequences, and a stacked sparse auto-encoder is used to actively learn the feature information in the video image. Next, a deep belief network is adopted to build a classification detection model. Finally, an adaptive learning rate strategy is introduced to fine-tune the whole artificial neural net- work. This method does not require consecutive video fetching frames and has better ability of active learning about image features, and therefore it overcomes the limitation of manual feature extraction. Experimental results demonstrate that the detection accuracy of the proposed method for leaf occlu- sion in surveillance videos can reach 88.97% under the condition of sufficient samples.
作者 邬美银 陈黎
出处 《武汉科技大学学报》 CAS 北大核心 2016年第1期69-74,共6页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(61375017) 湖北省高等学校优秀中青年科技创新团队计划项目(T201202) 武汉科技大学研究生创新创业基金资助项目(JCX2015010)
关键词 监控视频 遮挡检测 图像识别 稀疏自编码器 深度置信网络 深度学习 特征提取 surveillance video occlusion detection image recognition sparse auto-encoder deep belief network deep learning feature extraction
  • 相关文献

参考文献10

  • 1刘治红,骆云志.智能视频监控技术及其在安防领域的应用[J].兵工自动化,2009,28(4):75-78. 被引量:54
  • 2Ribnick E,Atev S,Masoud O,et al.Real-time de- tection of camera tampering[C]//Proceedings of the IEEE International Conference on Video and Signal Based Surveillance,November 22-24,2006,Sydney,Australia.IEEE,2006:10-16.
  • 3Lin Daw-Tung,Wu Chung-Han.Real-time active tampering detection of surveillance camera and im- plementation on digital signal processor[C]//Pro- ceedings of the 2012 Eighth International Confer- ence on Intelligent Information Hiding and Multi- media Signal Processing.IEEE,2012:383-386.
  • 4王宝君,胡福乔.基于角点的监控摄像头干扰检测[J].计算机应用与软件,2010,27(5):243-245. 被引量:7
  • 5Saglam A,Temizel A.Real-time adaptive camera tamper detection for video surveillance[C]//Pro- ceedings of the Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance,September 2-4,2009,Genova,Italy.IEEE,2009:430-435.
  • 6Yin Hongpeng,Jiao Xuguo,Luo Xianke,et al.Sift-based camera tamper detection for video sur- veillance[C]//第25届中国控制与决策会议论文集.沈阳:东北大学出版社,2013:665-668.
  • 7袁渊,丁胜,徐新,陈黎.基于支持向量机的监控视频遮挡树叶检测[J].计算机应用,2014,34(7):2023-2027. 被引量:6
  • 8Bengio Y.Learning deep architectures for AI[M]// Foundations and Trends in Machine Learning.Hanover,MA:Now Publishers Inc,2009.
  • 9Zhu Ming,Wu Yan.A novel deep model for image recognition[C]//2014 5th IEEE International Con- ference on Software Engineering and Service Science(ICSESS),IEEE,2014:373-376.
  • 10张春霞,姬楠楠,王冠伟.受限波尔兹曼机简介[EB/OL].北京:中国科技论文在线(2013-01-11)[2015-11-14].http://www.paper,edu.cn/release- paper/content/201301-528.

二级参考文献19

  • 1李位星,范瑞霞.基于DSP的运动目标跟踪系统[J].自动化技术与应用,2004,23(4):46-49. 被引量:13
  • 2Evan Ribnick,Stefan Atev,Osama Masoud.Real-Time Detection of Camera Tampering[C] //Proceedings of the IEEE International Conference on Video and Signal Based Surveillance,2006.Digital Object Identifier 2006.
  • 3Fridrich J.Image Watermarking for Tamper Detection[C] //Proc.of ICIP,1998:404-408.
  • 4王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 5欧维,刘荣,蒋红梅.智能视频监控技术在电视监控系统中的应用[J].智能建筑电气技术,2007,1(5):3-5. 被引量:9
  • 6周小龙.监控视频摘要生成技术的研究与实现[D].重庆:重庆大学,2010.
  • 7RIBNICK E,ATEV S,MASOUD O,et al.Real-time detection of camera tampering[C]//Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance.Piscataway:IEEE,2006:10-16.
  • 8LIND T,WU C H.Real-time active tampering detection of surveillance camera and implementation on digital signal processor[C]//Proceedings of the 8th International Conference on Intelligent Information Hiding and Multimedia Signal Processing.Piscataway:IEEE,2012:383-386.
  • 9YIN H P,J1AO X G,LUO X K,etal.Sift-based camera tamper detection for video surveillance[C]// Proceedings of the 25th Chinese Control and Decision Conference.Piscataway:IEEE,2013:665-668.
  • 10SAGLAM A,TEMIZEL A.Real-time adaptive camera tamper detection for video surveillance[C]// Proceedings of the 2009 IEEE International Conference on Advanced Video and Signal Based Surveillance.Piscataway:IEEE,2009:430-435.

共引文献64

同被引文献130

引证文献9

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部