摘要
为有效去除三维网格模型中的噪声,提出一种用于网格去噪的自适应双边滤波器.首先,利用体积积分不变量对三维网格模型进行特征检测,估计出局部的特征强度,然后根据特征强度自适应地调整双边滤波器的滤波参数.通过自适应的参数优化,对于不同特征强度的区域,自适应双边滤波器采用更具针对性的去噪策略,从而进一步提高了去噪性能.实验结果表明,相比于双边滤波器,所提出的自适应双边滤波器在去除噪声的同时,能够更好地保持三维网格模型的细节特征,去噪后得到的网格模型与原始模型的客观差值测度平均降低了0.0332.
In this paper,an adaptive bilateral filter is proposed to remove noises in 3D mesh models. Firstly,the feature detection of 3D mesh models is performed on the basis of the volume integral invariant,and the local feature strength is estimated. Then,the proposed filter adaptively adjusts the denoising parameters in the bilateral filter according to the local feature strength. Through the adaptive optimization of parameters,the proposed filter provides targeted denoising strategies for the regions with different feature strength,thus further improving the denoising performance. Experimental results reveal that,in comparison with common bilateral filters,the proposed adaptive bilateral filter achieves a superior performance in preserving the sharp features of 3D mesh models during the denoising,and the objective distance measure between the denoised mesh model and the original model is averagely reduced by 0. 033 2.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2015年第11期54-60,74,共8页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(61371089
61571337)~~
关键词
三维网格
网格去噪
双边滤波器
特征检测
特征保持
3D meshes
mesh denoising
bilateral filter
feature detection
feature preserving