期刊文献+

压缩感知稀疏表示在雷达目标识别中的应用 被引量:4

Application of Compressed Sensing and Sparse Representation in Radar Target Recognition
下载PDF
导出
摘要 高分辨距离像(HRRP)目标识别算法很多,在其利用高分辨距离像蕴含的目标结构信息的同时,也需要面对数据量巨大的难题。事实上,尽管高分辨距离像数据量巨大,但却是稀疏的,然而利用其稀疏特性进行识别的方法却不多。为此,提出了一种基于压缩感知稀疏表示方法实现目标识别的算法。该算法首先采用遗传正交匹配追踪(OMP)算法对一维距离像训练样本进行稀疏分解以获得类别字典,然后根据类别字典分析测试样本的重构误差实现目标识别。仿真实验证明,所提算法简捷、识别率更高,相较于常规算法识别率提高最多可达20%,并且在受到噪声干扰情况下依然能够稳健地识别目标。 There are many radar target recognition algorithms for high resolution range profile( HRRP). All of them use the target structure information embedded in HRRPs. However,it is difficult to extract and analyze such vast amounts of data. In fact,HRRPs are sparse,but less of radar target recognition algorithms employ the sparseness of HRRPs. Thus,a fast sparse representation algorithm in compressed sensing( CS)theory is applied to radar target recognition. First,an orthogonal matching pursuit( OMP) based on genetic algorithm( GA) is used to analyze the training samples and product taxonomic dictionaries quickly. Then,reconstruction errors of some testing samples are calculated so to recognize the targets. The simulations show that this algorithm has the advantages of conciseness,higher recognition rate and good robustness. Compared with some conventional methods,the proposed algorithm can increase recognition rate up to 20%.
作者 段沛沛 李辉
出处 《电讯技术》 北大核心 2016年第1期20-25,共6页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61571364)~~
关键词 雷达目标识别 高分辨距离像 压缩感知 稀疏表示 正交匹配追踪 遗传算法 radar target recognition high resolution range profile compressed sensing sparse representation orthogonal matching pursuit genetic algorithm
  • 相关文献

参考文献16

  • 1孟路稳,周沫,曾浩,察豪,张润哲.高分辨雷达目标回波信号模拟与分析[J].电讯技术,2014,54(10):1396-1400. 被引量:5
  • 2LI J,STOICA P. Efficient mixed-spectrum estimationwith application to feature extraction[J]. IEEE Transac-tions on Signal Processing,1996,42(2):281-295.
  • 3JOUNY I,GARBER F D,MOSES R L. Radar target iden-tification using the bispectrum:a comparative study[J].IEEE Transactions on Aerospace and Electronic System,1995,31(1):69-77.
  • 4CHANDRAN V,ELGAR S L. Pattern recognition usinginvariants defined from higher order spectra one dimen-sional inputs[J]. IEEE Transactions on Signal Process-ing,1993,41(1):205-212.
  • 5刘本永.子空间法雷达目标一维像识别研究[J].电子与信息学报,2004,26(7):1137-1143. 被引量:9
  • 6邹建成,车冬娟.信号稀疏表示方法研究进展综述[J].北方工业大学学报,2013,25(1):1-4. 被引量:5
  • 7TSAIG Y,DONOHO D L. Extensions of compressed sens-ing[J]. Signal Processing,2006,86(3):549-571.
  • 8DANIELE B, MARK D P. Learning dictionaries forsparse approximation using iterative projections and rota-tions[J]. IEEE Transactions on Signal Processing,2013,61(8):2055-2065.
  • 9FENG B,DU L,LIU H W,et al. Radar HRRP target rec-ognition based on K-SVD algorithm[C] / / Proceedingsof 2011 IEEE CIE International Conference on Radar.Chengdu:IEEE,2011:642-645.
  • 10王彩云,孔一荟.基于稀疏表示字典优化的雷达高分辨距离像目标识别[J].南京航空航天大学学报,2013,45(6):837-842. 被引量:9

二级参考文献79

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3Cohen M N. Variability of ultra-high range radar profiles and some implication for target recognition. Proc. SPIE, 1992, Vol.1699: 256-266.
  • 4Li H J, Yang S H. Using range profiles as feature vectors to identify aerospace objects. IEEE Trans. on Antenna and Propagation , 1993, 41(6): 261-268.
  • 5Smith C R, Goggans P M. Radar target identific ation. IEEE Antenna and Propagation Magazine,1993, 35(2): 27-38.
  • 6Hudson S, Psaltis D. Correlation filters for aircraft identification from radar range profiles. IEEE Trans. on Aerospace and Electronic System, 1993, 29(3): 741-748.
  • 7McIlraith A L, Card H C. Birdsong recognition using backpropagation and multivariate statistics.IEEE Trans. on Signal Processing, 1997, 45(11): 2740-2748.
  • 8Sirovich L, Kirby M. Low-dimensional procedure for the characterization of human faces. J. Opt.Soc. Am. A, 1987, 4(3): 519-524.
  • 9Turk M A, Pentland A P. Face recognition using eigenfaces. Proc. IEEE Computer Soc. Conference on Computer Vision and Pattern Recognition, Hawaii, 1991: 586-591.
  • 10Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear-projection. IEEE Trans. on Pattern Analysis and Machine Intelligence,1997, 19(7): 711-720.

共引文献40

同被引文献10

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部