摘要
针对独立分量分析(ICA)模型在火山灰云遥感检测中的不足,提出了一种改进型ICA即变分贝叶斯ICA(VBICA)和支持向量机(SVM)相结合的火山灰云遥感检测算法,实现了火山灰云信息的近似分离。实验结果表明,所提算法能够从中分辨率成像光谱仪(MODIS)遥感图像中检测出火山灰云目标信息,且总检测精度和Kappa系数分别达到了88.4%和0.801 1,取得了较好的检测效果。
For the deficiencies of Independent Component Analysis( ICA) model in volcanic ash cloud remote sensing detection,a remote sensing detection algorithm is proposed based on improved ICA( namely Variational Bayesian ICA,VBICA) and Support Vector Machine( SVM) to realize the approximate separation of volcanic ash cloud information. Test results show that the proposed method can detect the volcanic ash cloud information from the Moderate Resolution Imaging Spectradiometer( MODIS) remote sensing image,and the total detection accuracy and Kappa coefficient reaches 88. 4% and 0. 801 1 respectively. The detection result is satisfying.
出处
《电讯技术》
北大核心
2016年第1期88-92,共5页
Telecommunication Engineering
基金
国家自然科学基金资助项目(41404024)
上海市科技发展基金资助项目(14231202600)
上海高校青年教师培养资助计划项目(2014-2016)~~
关键词
火山灰云
遥感检测
独立分量分析
支持向量机
MODIS图像
贝叶斯网络
volcanic ash cloud
remote sensing detection
independent component analysis
support vector machine
MODIS image
Bayesian network