期刊文献+

基于局部软决策的分布式检测算法 被引量:1

A Distributed Detection Algorithm Based on Local Soft Decision
下载PDF
导出
摘要 为在保证一定检测性能的前提下有效地降低所需传输的数据量,文中提出了一种基于局部软决策的分布式检测算法,推导并构造了基于局部软决策分布式检测的优化问题,求解得到使系统检测性能达到最优的局部软决策方案;将文中方案与均匀量化方案、未量化方案进行对比,分析了在理想/非理想信道条件下检测性能的优劣.实验结果表明:文中提出的算法性能优于基于均匀量化的分布式检测算法;当量化深度为3时,系统的检测性能十分接近未量化方案的检测性能. In order to reduce the size of transmitted data on the premise of retaining a certain detection perfor-mance, a distributed detection algorithm is proposed on the basis of local soft decision.Then, an optimization prob-lem on the basis of the distributed detection with local soft decision is derived and formulated, and a local soft deci-sion scheme for achieving the optimum detection performance is obtained by utilizing the routine method to solve the optimization problem.Finally, the detection performance of the proposed algorithm is verified by a simulation and is compared with that of the algorithm with uniform quantization or without quantization in the ideal/imperfect chan-nels.Numerical results demonstrate that, in terms of detection performance, the proposed algorithm outperforms the algorithm with uniform quantization, and is very close to the algorithm without quantization when a 3-bit quantiza-tion is conducted.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期16-21,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61271263 61101141)~~
关键词 无线传感器网络 分布式检测 软决策 广义似然比检验 wireless sensor networks distributed detection soft decision generalized likelihood ratio test
  • 相关文献

参考文献17

  • 1TSITSIKLISJN,POORHV,THOMASJB.Decentrali-zeddetection[J].AdvancesinStatisticalSignalProce-ssing,2003,2:297-344.
  • 2沈晓静.多传感器分布式检测和估计融合[J].中国科学:数学,2014,44(2):105-116. 被引量:3
  • 3YINGL,HAOC.Distributeddetectionperformanceunderdependentobservationsand non-idealchannels[J].IEEESensorsJournal,2015,15(2):715-722.
  • 4何有 王国宏.多传感器信息融合及应用[M].北京:电子工业出版社,2000,11..
  • 5胥布工,刘贵云.基于无线传感器网络的鲁棒分布式估计[J].华南理工大学学报(自然科学版),2012,40(10):198-202. 被引量:3
  • 6相明,王立琦,张亚明,葛新蕾.传感器观测相关条件下的最优分布式检测融合算法[J].西安交通大学学报,2008,42(12):1441-1444. 被引量:3
  • 7VEMPATYA,RAYP,VARSHNEYPK.FalsediscoveryratebaseddistributeddetectioninthepresenceofByzan-tines[J].IEEETransactionsonAerospaceandElectro-nicSystems,2014,50(3):1826-1840.
  • 8夏双志,周万幸.分布式检测系统的一种软决策融合算法[J].传感技术学报,2008,21(7):1164-1168. 被引量:8
  • 9TARIGHATIA,JALDENJ.BayesiandesignofTandemnetworksfordistributeddetectionwithmulti-bitsensordeci-sions[J].IEEETransactionsonSignalProcessing,2015,63(7):1821-1831.
  • 10YANGX,NIUR.Channel-awaretrackinginmulti-hopwirelesssensornetworkswith quantized measurements[J].IEEETransactionsonAerospaceandElectronicSystems,2013,49(4):2353-2368.

二级参考文献36

  • 1HOBALLAH I Y, VARSHNEY P K. Distributed Bayesian signal detection [J]. IEEE Trans on Inform Theory, 1989,35 (9):995-1000.
  • 2WILLETT P, SWASZEK P F, BLUM R S. The good, bad and ugly. distributed detection of a known signal in dependent Gaussian noise[J]. IEEE Trans on Signal Processing, 2000, 48(12):3266-3279.
  • 3YAN Qing, BLUM R S. On some unresovled issues in finding optimum distributed detection schemes [J]. IEEE Trans on Signal Processing, 2000, 48(12):3280 -3288.
  • 4YAN Qing, BLUM R S. Distributed signal detection under the Neyman-Pearson criterion [J]. IEEE Trans on Inform Theory, 2001, 47(5) : 1368-1377.
  • 5TANG Zhuangbo, PATTIPATI K R, KLEINMAN D L. Optimization of detection networks, part Ⅰ: tandem structures [J]. IEEE Trans on Syst Man Cyber, 1991, 21(9/10) : 1044-1059.
  • 6PAPASTAVROU J D, ATHANS M. Distributed detection by a large team of sensors in tandem[J].IEEE Trans on Aerosp Electron Syst, 1992, 28(3): 639- 653.
  • 7Varshney P K. Distributed detection and data fusion[M]. Berlin, Germany: Springer-Verlag, 1996.
  • 8Viswanathan R, Varshney P K. Distributed detection with multiple sensors Ⅰ: fundamentals [J]. Proceedings of the IEEE, 1997,85(1):54-63.
  • 9Qian Zhang,Pramod K.Varshney,Richard D.Wesel.Optimal Bi-Level Quantization of i.i.d.Sensor Observations for Binary Hypothesis Testing[J].IEEE Trans.Inform.Theory,JULY 2002,48(7).
  • 10Varshney P K.Distributed Detection and Data Fusion[M].New York:Springer-Verlag,1997.

共引文献20

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部