期刊文献+

基于混沌序列稀疏化测量矩阵的ISAR成像 被引量:1

ISAR Imaging Based on Sparse Chaotic Sequence Measurement Matrices
下载PDF
导出
摘要 在压缩感知逆合成孔径雷达(ISAR)成像中,构造测量矩阵是核心工作之一.混沌序列测量矩阵具有良好的伪随机性,能满足压缩测量的要求.针对混沌序列测量矩阵中非零随机元数目多而造成硬件实现困难的问题,文中提出了一种混沌序列稀疏化测量矩阵的构造方法.首先对混沌序列测量矩阵进行优化,然后沿矩阵对角方向进行置零稀疏化,最后将其应用于微波暗室进行ISAR成像实验.结果表明,与传统高斯随机矩阵成像方法相比,文中方法在降低计算复杂度、硬件实现难度基础上达到了ISAR成像的准确聚焦. The construction of measurement matrices is one of the core tasks in compressed sensing inverse synthe-tic aperture radar ( ISAR) imaging.The chaotic sequence measurement matrices are of excellent pseudo-random-ness, which can meet the requirements of compressive measurement.As it is difficult to implement the hardware engineering of the chaotic sequence measurement matrices because of the huge number of independent random ele-ments, a construction method of sparse chaotic sequence measurement matrices is proposed in this paper.In the method, the chaotic sequence measurement matrices are optimized, and then setting the zero along the diagonal di-rection is performed to make the matrix sparse.Finally, the sparse chaotic sequence measurement matrices are used to conduct ISAR imaging experiments in a microwave anechoic chamber.The results show that, in comparison with the Gauss random matrix imaging method, the proposed method achieves an accurate focusing of ISAR imaging and reduces the computational complexity and the hardware implementation difficulty.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期65-70,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61472324) 国家自然科学基金青年科学基金资助项目(61401360) 西北工业大学中央高校基本科研业务费专项资金资助项目(3102014JCQ01055)~~
关键词 混沌序列 压缩感知 ISAR成像 微波暗室 chaotic sequence compressed sensing ISAR imaging microwave anechoic chamber
  • 相关文献

参考文献9

  • 1DONOHODL.Compressedsensing[J].IEEETransac-tionsonInformationTheory,2006,52(4):1289-1306.
  • 2CANDESEJ,ROMBERGJ,TAOT.Robustuncertaintyprinciples:exactsignalreconstructionfromhighlyincom-pletefrequencyinformation[J].IEEETransactionsonInformationTheory,2006,52(2):489-509.
  • 3BARANIUKR.A lectureoncompressivesensing[J].IEEESignalProcessingMagazine,2007,24(4):118-121.
  • 4ENDERJHG.Oncompressivesensingappliedtoradar[J].SignalProcessing,2010,90(5):1402-1414.
  • 5张劲东,张弓,潘汇,贲德.基于滤波器结构的压缩感知雷达感知矩阵优化[J].航空学报,2013,34(4):864-872. 被引量:12
  • 6CANDESEJ,ROMBERGJK,TAOT.Stablesignalre-covery from incomplete and inaccurate measurements[J].CommunicationsonPureandAppliedMathematics,2006,59(8):1207-1223.
  • 7CANDESEJ39 D,TAOT.Decodingbylinearprogramming[J].IEEETransactionsonInformationTheory,2005,51(12):4203-4215.
  • 8LINH-TRUNGN,VANPHONGD,HUSSAINZM,etal.Compressedsensingusingchaosfilters[C]∥ Procee-dingsofTelecommunicationNetworksandApplicationsConference.Adelaide:IEEE,2008:219-223.
  • 9YUL,BARBOTJP,ZHENGG,etal.Compressivesen-singwithchaoticsequence[J].IEEESignalProcessingLetters,2010,17(8):731-734.

二级参考文献16

  • 1Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25 (2) : 21-30.
  • 2Baraniuk R, Steeghs P. Compressive radar imaging. IEEE Radar Conference, 2007: 128-133.
  • 3Candes E. The restricted isometry property and its impli cations for compressed sensing. Comptes Rendus Methematique, 2008, 346(9): 589-592.
  • 4Tropp J A. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 2004, 50(10):2231-2242.
  • 5Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
  • 6Ji S H, Xue Y, Carin L. Bayesian compressive sensing. IEEE Transactions on Signal Processing, 2008, 56 (6) 2346-2356.
  • 7Duarte-Carvajalino J M, Sapiro G. Learning to sense spares signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 2009, 18(7) : 1395-1408.
  • 8Abolghasemi V, Saideh F, Bahador M. On optimization of the measurement matrix for compressive sensing. 18th European Signal Processing Conference, 2010: 23-27.
  • 9Zhang J D, Zhu D Y, Zhang G. Adaptive compressed sensing radar oriented towards cognitive detection in dyL namic sparse target scene. IEEE Transactions on Signal Processing, 2012, 60(4) : 1718-1729.
  • 10Tropp J A, Wakin M B. Random filters for compressive sampling and reconstruction. IEEE International Conference on Acoustics, Speech and Signal Processing, 2006: 872-875.

共引文献11

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部