期刊文献+

The Negative Spectrum of Schrödinger Operators with Fractal Potentials 被引量:1

下载PDF
导出
摘要 Let Γ?R;be a regular anisotropic fractal. We discuss the problem of the negative spectrum for the Schr?dinger operators associated with the formal expression H;=id-?+βtr;,β∈R,acting in the anisotropic Sobolev space W;(R;), where ? is the Dirichlet Laplanian in R;and tr;is a fractal potential(distribution) supported by Γ. Let Γ?R^2 be a regular anisotropic fractal. We discuss the problem of the negative spectrum for the Schr?dinger operators associated with the formal expression H_β=id-?+βtr_b~Γ,β∈R,acting in the anisotropic Sobolev space W_2^(1,α)(R^2), where ? is the Dirichlet Laplanian in R^2 and tr_b~Γ is a fractal potential(distribution) supported by Γ.
出处 《Analysis in Theory and Applications》 CSCD 2015年第4期381-393,共13页 分析理论与应用(英文刊)
基金 supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.13KJB110010) the Pre Study Foundation of Nanjing University of Finance&Economics(Grant No.YYJ2013016) the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
  • 相关文献

参考文献12

  • 1B. Carl, Entropy numbers, s- numbers and eigenvalue problems, J. Funct. Anal. 41 (1981),290–306.
  • 2D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators,Cambridge University Press, 1996.
  • 3W. Farkas, Atomic and subatomic decompositions in anisotropic function spaces, Math.Nachr., 209 (2000), 83–113.
  • 4W. Farkas, Eigenvalue distribution of some fractal semi-elliptic differential operators, Math.Z., 236 (2001), 291–320.
  • 5K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
  • 6K. J. Falconer, Techniques in Fractal Geometry, Wiley and Sons, Chichester, 1997.
  • 7H. Triebel, Fractals and Spectra: Related to Fourier Analysis and Function Spaces, Basel:Birkhauser, 1997.
  • 8H. Triebel, Theory of Function Spaces III, Basel: Birkhauser, 2006.
  • 9N. Xu and W. Y. Su, On eigenvalues of spherical fractal drums, Science in China, Ser. A,46(1)(2002), 39–47.
  • 10M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I. Boundednesson spaces of Besov type. J. Fac. Sci. Univ. Tokyo, Sect. I. A Math., 33(1986), 131–174.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部