期刊文献+

2-DOF柔性微动平台的拓扑优化设计 被引量:2

Topology Optimization Design of A 2-DOF Flexure-based Micro-positioning Stage
原文传递
导出
摘要 采用拓扑优化方法在给定设计区域内寻求材料的最佳分布,以获得布局合理的2-DOF微动平台新构型。在考虑平台所受载荷的情况下,采用变密度法及连续体柔性结构互能与应变能的比值法,建立了平台单自由度方向上的拓扑优化目标函数,并基于线性加权法建立了2-DOF平台的多目标拓扑优化数学模型,通过对所建模型求解,得到了具有对称双圆弧柔性薄板式弹性单元体的2-DOF微动平台的新构型。对平台的静动态特性进行了有限元分析及实验测试,结果表明:在150 V驱动电压作用下,x、y方向的位移分别为16.7μm、15.46μm,位移耦合分别为0.47μm、0.50μm,x、y方向的固有频率均为1.725 k Hz,在20 N阶跃输入力作用下,x、y方向的响应时间均约为13 ms。 To get the optimal distribution of the material in the given design area, a new configuration of 2-DOF micro-positioning stage was obtained using the topology optimization method. Based on the variable density method and the ratio method between the mutual potential energy and strain energy, the objective function of the stage in one degree of freedom for topology optimization was established, in which the load cases of the stage were considered. Based on the linear weighted method, the mathematical model of the stage for multi-objective topology optimization was developed as well. Then, the initial prototype of the stage, which has elastic unit body based on symmetrical double circular flexible sheet, was obtained by solving the obtained model. The static and dynamic performances of the stage were analysed using finite element methods and tested through experiments. Experimental results shows that, under the highest driving vohage of 150 V, the displacements of the stage in x and y directions are 16.7 μm and 15.46μm respectively, the coupling displacements in that two directions are 0.47 μm and 0.50 μm respectively, and the natural frequencies of that two directions are both 1. 725 kHz. Meanwhile, under the input step force of 20 N, the response time of the stage in the two directions are both approximately 13 ms.
出处 《机械设计与研究》 CSCD 北大核心 2016年第1期18-23,共6页 Machine Design And Research
基金 国家自然科学基金资助项目(51175271) 教育部留学回国人员科研启动基金资助项目 浙江省高等学校中青年学科带头人学术攀登项目(Pd2013091)
关键词 微动平台 并联柔性结构 拓扑优化 有限元分析 特性测试 micro-positioning stage flexure-based parallel structure topology optimization finite element analysis characteristic test
  • 相关文献

参考文献13

  • 1吴鹰飞,周兆英.超精密定位工作台[J].微细加工技术,2002(2):41-47. 被引量:34
  • 2刘登云,杨志刚,程光明,曾平.微位移机构的现状及趋势[J].机械设计与制造,2007(1):156-158. 被引量:12
  • 3Zhang Deyuna, Chuang Chienlni. A Piezodriven XY-micro stage for mulitiprobe nanorecording[ J ]. Sensors and Aeutators. A, Physi- cal_ 2003. 108. 230-233.
  • 4荣伟彬,马立,孙立宁,谢晖,陈立国.二维微动工作台分析及其优化设计方法[J].机械工程学报,2006,42(B05):26-30. 被引量:9
  • 5Yanding Qin, Bijan Shirinzadeh. Design issues in a decoupled XY stage Static and dynamics modeling, hysteresis compensation, and tracking control[ J]. Sensors and Actuators A, Physical, 2013, 194 : 95 - 105.
  • 6Sebastian Polit, Jingyan Dong. Development of a High-Bandwidth XY Nanopositioning Stage for High-Rate Micro-/Nanomanufaetur- ing [ J ]. IEEE/ASME Transactions on meehatronies, 2011, 16 (4) : 724 -733.
  • 7Umesh Bhagat, Bijan Shirinzadeh. Design and analysis of a novel flexure-based 3-DOF mechanism [ J ~. Mechanism and Machine Theory, 2014, 74 : 173 - 187.
  • 8LeiJie Lai, GuoYing Gu, Limin Zhu. Design and control of a deeou- pled two degree of freedom translational parallel miere-positioning stage [ J ]. Review of Scientific Instruments, 2012, 83 : 1 - 17. .
  • 9Pengbo Liu, Peng Yan, Zhen Zhang, et al. Modeling and control of a novel X-Y parallel piezoelectric-actuator driven nanopositioner [J]. ISA Transactions, 2014,(10) : 1 -5.
  • 10Y Shimizu, Yuxin Peng, Junji Kaneko, et al. Design and con- struction of the motion mechanism of an XY micro-stage for preci- sion positioning[J]. Sensors and Actuators A, 2013, 201 : 395 - 406.

二级参考文献24

  • 1孙宝元,杨贵玉,李震.拓扑优化方法及其在微型柔性结构设计中的应用[J].纳米技术与精密工程,2003,1(1):24-30. 被引量:11
  • 2王建林,刘文晖,胡晓东,胡小唐.压电微位移器在超微定位系统中的应用[J].压电与声光,1997,19(2):95-97. 被引量:12
  • 3高宏 李庆祥 等.亚微米弹性微位移工作台系统的设计及其精度分析[J].清华大学学报,1988,28(5):19-28.
  • 4Sigmund O. Design of Multiphysics Actuators Using Topology Optimization - Part 1: One- material Structures. Computer Methods in Applied Mechanics and Engineering, 2001,190: 6577~6604
  • 5谢先海.柔顺机构的设计与分析方法研究:[博士学位论文].武汉:华中科技大学,2002
  • 6Ananthasuresh G K,Kota S. Designing Compliant Mechanisms. Mechanical Engineering, 1995,11: 93~96
  • 7Hetrick J, Kota S. An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms. Journal of Mechanical Design, 1999,121: 229~234
  • 8Sigmund O. On the Design of Compliant Mechanisms Using Topology Optimization. Mechanics of Structures and Machines, 1997,25(4): 495~526
  • 9Jonsmann J. Technology Development for Topology Optimized Thermal Microactuators:[Ph D Dissertation]. Lyngby: Technical University of Denmark, 1999
  • 10Kota S, Joo J Y,Li Z. Design of Compliant Mechanisms: Applications to MEMS. Analog Integrated Circuits and Signal Processing, 2001,29: 7~15

共引文献75

同被引文献21

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部