期刊文献+

第一可数正则空间的闭扩充

Closed Extensions of First Countable Regular Spaces
下载PDF
导出
摘要 证明了第一可数正则闭空间、第一可数正则极小空间与第一可数正则弱紧空间的等价性,并进一步证明了每一个局部弱紧的第一可数正则空间一定存在一个第一可数正则闭扩充. We prove that equivalance of first countable regular-closed spaces and minimal first countable regular spaces and feebly compact first countable regular spaces. We also prove that there exists a first countable regular-closed extension space for every locally feebly compact first countable regular space.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2015年第6期738-742,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 内蒙古自然科学基金资助项目(2010MS0118)
关键词 第一可数正则空间 闭扩充 弱紧 局部弱紧 滤子基 first countable regular space closed-extension feebly compact locally feebly compact filter base
  • 相关文献

参考文献8

  • 1Stephenson Jr R M. Minimal first Countable topologies [J].Trans Amer Math $0c,1969,138:115-127.
  • 2Stephenson Jr R M. Minimal first Countable Hausdorff Spaces [J]. Pacific J Math,1971,36:819-825.
  • 3Stephenson Jr R M. Moore-closed and first Countable feebly Compact extension Spaces [J]. Gen Topology Appl, 1987(1) : 11-28.
  • 4ToshiJi Terade,Jun Terasawa. Maximal extensions of first Countable spaces [J]. Proc Amer Math Soc,I982,85 :95-99.
  • 5王延庚.关于弱正则空间的闭扩充[J].纯粹数学与应用数学,1993,9(2):17-20. 被引量:3
  • 6Scarborough C T,Stone A H. Products of nearly compact Spaces[J].Trans Amer Math Soc,1966,124:131-147.
  • 7Engelking R. General Topology [M]. Pwn-polish, Scientific Publishers, 1977.
  • 8Bagley R W,Connell E H, Mcknight Jr J D. On Properties characterizing psedocompact spaces [J]. Proc Amer Math Soc,1958(9) :500-506.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部