期刊文献+

基于渐进性能分析的最优分布式量化检测算法 被引量:1

One-bit quantization design for distributed detection based on asymptotic analysis
下载PDF
导出
摘要 针对无线传感器网络中对发送功率和传输带宽限制的问题,提出基于规则量化(RQ)和不规则量化(NRQ)的一比特分布式检测算法。该检测方案在传感器节点处引入量化器,整个系统采用并行结构,由N个带有量化器的传感器节点组成。融合中心处采用广义似然比检验(GLRT)作为融合准则,并根据接收到的二进制信息作出全局判决。通过仿真实验对所提出的检测方案性能进行验证,并与未量化的检测方案进行比较。仿真结果表明:最优量化阈值提升了融合中心的检测概率,在理想信道和差错信道(BSC)下,基于不规则量化方案的检测系统性能明显优于基于规则量化方案的检测系统。 In view of transmission power/bandwidth constrains in wireless sensor networks(WSNs), two distributed detection schemes, namely, 1-bit regular quantizer(RQ) and 1-bit non-regular quantizer(NRQ), were proposed. The quantizers were employed in local sensor nodes. The decentralized detection system, adopting parallel structure, consists of N sensor nodes with quantizers. The generalize likehood ratio test(GLRT) was employed as a fusion rule at the fusion center(FC), where a global decision was performed. The performances of the proposed schemes were verified by a simulation, and the proposed schemes were compared with each other as well as with those without quantization. The results show that the detection performance is improved by optimizing the local quantization threshold. The performance of the 1-bit GLRT detector based on NRQ scheme outperforms the counterpart based on RQ scheme, either in a perfect channel or in binary symmetric channel(BSC).
作者 郭黎利 高飞
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第12期4529-4534,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61271263 60772129)~~
关键词 无线传感器网络 一比特量化 分布式检测 广义似然比检验 wireless sensor networks 1-bit quantization distributed detection GLRT
  • 相关文献

参考文献20

  • 1Yang Z,Meratnia N,Havinga P.Outlier detection techniques for wireless sensor networks:A survey[J].IEEE Communications Surveys and Tutorials,2010,12(2):159-170.
  • 2Viswanathan,Varshney P K.Distributed detection with multiple sensors:Part I-Fundamentals[J].Proceedings of IEEE,1997,85(1):54-63.
  • 3Gastpar M.Uncoded transmission is exactly optimal for a simple Gaussian sensor network[C]//Information Theory and Applications Workshop.La Jolla:IEEE,2007:177-182.
  • 4Senol H,Tepedelenlioglu C.Performance of distributed estimation over unknown parallel fading channels[J],IEEE Transactions on Signal Processing,2008,56(12):6057-6068.
  • 5Das A,Rao B D.SNR and noise variance estimation for MIMO systems[J].IEEE Transactions on Signal Processing,2012,60(8):3929-3941.
  • 6Chamberland J F,Veeravalli V V.Decentralized detection in sensor networks[J].IEEE Transactions on Signal Processing,2003,51(2):407-416.
  • 7Xiao J J,Luo Z Q.Universal decentralized detection in a bandwidth-constrained sensor network[J].IEEE Transaction on Signal Processing,2005,53(8):2617-2624.
  • 8Niu R,Chen B,Varshney P K.Fusion of decisions transmitted over Rayleigh fading channels in wireless sensor networks[J].IEEE Transactions on Signal Processing,2006,54(3):1018-1027.
  • 9Rieiro A,Giannakis G B.Bandwidth-constrained distributed estimation for wireless sensor networks,Part II:Unknown probability density function[J].IEEE Transactions on Signal Processing,2006,54(3):2784-2796.
  • 10Rieiro A,Giannakis G B.Bandwidth-constrained distributed estimation for wireless sensor networks,Part I:Gaussian case[J].IEEE Transactions on Signal Processing,2006,54(3):1131-1143.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部