期刊文献+

固体聚合物电解池膜电极优化研究 被引量:3

Optimization of membrane electrode assembly for SPE water electrolysers
下载PDF
导出
摘要 采用催化剂直接涂膜(CCM)方法制备膜电极(MEA),研究阴极和阳极催化层中使用不同催化剂活性组分担载量对膜电极性能的影响。采用电化学阻抗谱(EIS)分析MEA的电化学特性。研究结果表明:阳极催化层中,随着Ir担载量的增加,在相同电流密度条件下,电解池的极化电压下降,当Ir担载量增加到2.5 mg/cm^2以上,极化电压趋于稳定;阴极催化层中,随着Pt担载量的增加,在相同电流密度条件下,电解池的极化电压下降,当Pt担载量增加到0.5 mg/cm^2以上,极化电压下降不明显,趋于稳定。随着电极催化层活性组分担载量的增加,MEA的欧姆阻抗R?和电荷传递阻抗RCT的减小。对于阴极催化层,当Pt/C催化层的催化剂担载量过多时,由于传质和电荷传递阻力显著增加,导致MEA的R?和RCT增大。阳极催化层Ir的最佳担载量为2.5 mg/cm^2,阴极催化层Pt的最佳担载量为0.5 mg/cm^2。 The membrane electrode assemblies(MEA) were fabricated by the catalyst coated membranes(CCM) where thin and porous catalyst layers were preferably deposited on both sides of the membrane. The different catalyst loadings of both cathode and anode were investigated to develop high performance MEA for solid polymer electrolyte(SPE) water electrolysis. The electrochemical property of MEA was analyzed by electrochemistry impedance spectroscopy(EIS). The results show that the polarization voltage decreases in the same current density with the increase of catalyst loading. However, the improvement of voltage is insensitive when catalyst loading is up to a threshold value. The threshold of Ir is 2.5 mg/cm^2 for anode and Pt is 0.5 mg/cm^2 for cathode, respectively. RCT and R? decrease with the increase of the catalyst loading. Excess catalyst loading leads to the increase of mass and charge transfer resistance for cathode, which results in the increase of R? and RCT of bad MEA. The optimal loading for anode(Ir) and cathode(Pt) is 2.5 mg/cm^2 and 0.5 mg/cm^2, respectively.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第12期4671-4678,共8页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(21306141)~~
关键词 电极催化剂 膜电极 SPE水电解 制氢 electrode catalyst membrane electrode assembly SPE water electrolysis hydrogen production
  • 相关文献

参考文献13

  • 1Carrasco J M,Franquelo L G,Bialasiewicz J T,et al.Power-electronic systems for the grid integration of renewable energy sources:A survey[J].IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
  • 2Edwards P P,Kuznetsov V L,David W I F,et al.Hydrogen and fuel cells:Towards a sustainable energy future[J].Energy Policy,2008,36(12):4356-4362.
  • 3Carton J G,Olabi A G.Wind/hydrogen hybrid systems:opportunity for Ireland's wind resource to provide consistent sustainable energy supply[J].Energy,2010,35(12):4536-4544.
  • 4Su H,Bladergroen B J,Linkov V,et al.Study of catalyst sprayed membrane under irradiation method to prepare high performance membrane electrode assemblies for solid polymer electrolyte water electrolysis[J].International Journal of Hydrogen Energy,2011,36(23):15081-15088.
  • 5Marangio F,Santarelli M,Cali M.Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production[J].International Journal of Hydrogen Energy,2009,34(3):1143-1158.
  • 6Millet P,Mbemba N,Grigoriev S A,et al.Electrochemical performances of PEM water electrolysis cells and perspectives[J].International Journal of Hydrogen Energy,2011,36(6):4134-4142.
  • 7Barbir F.PEM electrolysis for production of hydrogen from renewable energy sources[J].Solar Energy,2005,78(5):661-669.
  • 8Ursua A,Gandia L M,Sanchis P.Hydrogen production from water electrolysis:Current status and future trends[J].Proceedings of the IEEE,2012,100(2):410-426.
  • 9Passalacqua E,Lufrano F,Squadrito G,et al.Nafion content in the catalyst layer of polymer electrolyte fuel cells:Effects on structure and performance[J].Electrochimica Acta,2001,46(6):799-805.
  • 10Rasten E,Hagen G,Tunold R.Electrocatalysis in water electrolysis with solid polymer electrolyte[J].Electrochimica Acta,2003,48(25):3945-3952.

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部