期刊文献+

具有核壳结构的锂离子电池用Sn/C复合负极材料研究 被引量:1

Research on Sn/Carbon Compound Anode Materials with Core-Shell Structure for Lithium Ion Battery
下载PDF
导出
摘要 采用碳热还原法以及沥青裂解包覆技术,制备具有核壳结构的Sn/C复合负极材料,对采用改性天然石墨与人造石墨作为内核的效果作了比较,并分析研究壳层的厚度对材料综合性能的影响。结果表明,采用改性天然石墨作为内核能更有效分散Sn金属颗粒,另外沥青裂解碳包覆层的厚度对材料的循环稳定性具有较大的影响。以改性天然石墨为内核,具有(10%+20%)双层包覆结构的负极样品具有最佳的综合性能,首次库伦效率为76.3%,54周的容量保持率为99%。材料结构的设计以及结构的合成工艺是解决锡基合金负极材料体积效应的重要途径。 With the method of carbon thermal reduction and asphalt pyrolysis coating,a new Sn/C anode material for lithium ion battery was synthesized with core-shell structure.The comparison of modified natural graphite and artificial graphite used as core was carried out,and the influence on the cyclic performance from the thickness of the shell was studied.The results showed that using modified natural graphite as core got better dispersion of Sn particles,and the thickness of the asphalt coating played an important part on the cyclic performance.The sample using modified natural graphite as core with(10%+20%)two layers asphalt coating exhibited the best performance,whose initial cyclic efficiency was 76.3%,and the rate of capacity retention was 99% after 54 cycles.Consequently,a right structure and an appropriate treatment are keys to solve the problem of expansion and pulverization during the charge and discharge process.
出处 《材料导报》 EI CAS CSCD 北大核心 2015年第24期31-35,共5页 Materials Reports
基金 国家自然科学基金(51201066 51171065 51101062 11204090) 广东省自然科学基金重点项目(2015A030310336 S2012020010937 10351063101000001) 广东高校优秀青年创新人才培育项目(2012LYM_0048 LYM09052) 广东省科技计划项目(2012B010400005) 佛山市机电专业群工程技术开发中心项目(2015-KJZX068) 顺德职业技术学院青年科研骨干教师培养项目(2015-KJZX077)
关键词 Sn/C 负极材料 锂离子电池 核壳结构 Sn/carbon anode material lithium ion battery core-shell structure
  • 相关文献

参考文献11

  • 1余洪文,胡社军,侯贤华,李伟善.锂离子电池锡薄膜负极材料研究现状[J].电池,2008,38(4):253-256. 被引量:5
  • 2Sung Wenpei, Kao Jimmy, Chen Ran. Applied mechanics and materials thermal management simulation of lithium ion batteries for EV/HEV[J]. Appl Mechanics Mater, 2013, 457-458:350.
  • 3Galobardes F, Wang C, Madou M. Investigation on the so- lid electrolyte interface formed on pyrolyzed photoresist car- bon anodes for C-MEMS lithium-ion batteries[J]. Diamond Related Mater, 2006,15 : 1930.
  • 4Nishikawa K, Fukunaka Y, Sakka T, et al. In situ mea- surement of lithium mass transfer during charging and dis- charging of a Ni-Sn alloy electrode[J]. J Power Sources, 2007,174.668.
  • 5Hu R Z, Zeng M Q, Zhu M. Cyclic durable high-capacity Sn/Cu6 Sn~ composite thin film anodes for lithium ion batte- ries prepared by electron-beam evaporation deposition[J]. Electrochim Acta, 2009,54 : 2843.
  • 6Chojnacka A, Molenda M,Bakierska M, et al. Novel method of preparation of C/Sn-SnO2 nanocomposite Li-ion anode material derived from plant polysaccharides [J]. Procedia Eng,2014,98:2.
  • 7Nobili F, Meschini I, Mancini M, et al. High-performance Sn@carbon nanocomposite anode for lithium-ion batteries: Lithium storage processes characterization and low-tempera-ture behavior[J]. Electrochim Acta, 2013,107 :85.
  • 8Lee Y M, Kang Y M. Sn nanocrystal/carbon composites as high-capacity anode materials for lithium rechargeable bat- teries[J]. Power Sources, 2011,196 : 10686.
  • 9Chang W S, Park C M, Sohn H J. Electrochemical per- formance of pyrolyzed polyacrylonitrile (PAN) based Sn/C composite anode for Li-ion batteries[J].J Electroanal Chem, 2012,671:67.
  • 10Wang H Y, Gao P, Lu S F, et al. The effect of tin content to the morphology of Sn/carbon nanofiber and the electro- chemical per{ormance as anode material {or ~itbium batteries[J]. Electrochim Acta, 2011,58 : 44.

二级参考文献38

共引文献22

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部