摘要
随着物联网应用的快速发展,传感信息日益多元化,传感器网络规模广域化,底层传感器网络构成异构化,传感信息数量大数据化,相应地,这也使得底层传感信息中所蕴含的不一致性、不完整性、不准确性等影响信息质量的因素大大增加。而传统的上下文感知技术没有充分考虑上下文质量对感知过程的影响,因此,在现有的上下文感知系统框架的基础上,充分研究不一致性、不完整性、不准确性等低质量传感器上下文的消除问题,通过上下文质量因子分类配置、不准确与不一致上下文丢弃、不完整上下文填充等方法实现了不同层次的控制机制,降低了信息的不确定性,从而有效提高了物联网应用的上下文处理质量。
With the rapid development of IOT, it will lead to more multiple-dimensional and more numerous information with wide-area and heterogeneous sensor networks. Accordingly,the information from these kinds of networks may be more uncertain,incomplete,inconsistent and inaccurate. Therefore, we proposed a context management framework based on research of eliminating incomplete, inconsistent and inaccurate contexts. In this framework, we used quality factors configuration for contexts, regarding methods for inconsistent and inaccurate contexts as well as filling methods for incomplete contexts. Results show that the method can reduce the uncertainty of the contexts and improve the quality of the IOT applications efficiently.
出处
《计算机科学》
CSCD
北大核心
2015年第12期152-156,共5页
Computer Science
基金
国家自然科学基金项目(61100041)
中国博士后基金项目(2012M512131)资助