期刊文献+

基于GPU的多帧盲解卷积图像复原技术并行化实现 被引量:2

Parallel implementation of multiframe blind deconvolution based on GPU
下载PDF
导出
摘要 多帧盲解卷积图像复原技术能够进一步提高自适应光学图像的分辨力,但其算法比较复杂,处理耗时过长,对序列图像复原经常需要几分钟甚至几十分钟的计算时间,对实际应用造成了极大不便。为了提升算法的运行速度,改善其耗时过长的问题,通过研究和分析盲解卷积算法原理和算法结构,采用目前高速发展的中央处理器(CPU)和图形处理器(GPU)异构加速技术,主要对耗时最长的矩阵卷积运算进行优化,通过使用库函数与算法结构微调相结合的方法并行加速,实现多帧盲解卷积的图像复原算法的并行化。使用并行算法对图像进行复原处理,针对16帧以上分辨率为256×256像素的空间目标图像,可以实现17×的加速比,为图像复原的实时/准实时提供一种可行的方案。 Multiframe blind deconvolution algorithm, which is one of the primary methods for restoring image, can enhance the resolving power of the adaptive optical images. However, the multiframe blind deconvotution algorithm takes the alternate minimization, optimize deconvo- lution methods to solve the images and the point spread functions (PSFs) of the objects, the arithmetic is complexed and time-consuming,it always needs several minutes even up to several quarters to solve the problem. Via developing the central processing unit-graphics processing unit (CPU-GPU) heterogeneous system architecture, through the combination of using library function and modulating the structure of the algorithm, we optimized the most time-consuming part, matrix convolution, and achieved the parallel methods of restoring image. Results show that for more than 16 frames of sPatical target images with 256 N 256 pixels,the speed-up ratio of 17× could be realized. This paper can provide a feasible scheme for real-time/quasi real-time- image restoration.
出处 《应用光学》 CAS CSCD 北大核心 2016年第1期57-63,共7页 Journal of Applied Optics
基金 国家863计划项目资助(2012AA7801014)
关键词 图像复原 多帧卷积 GPU restoring image multiframe blind deconvolution GPU
  • 相关文献

参考文献8

  • 1姜文汉,张雨东,饶长辉,凌宁,官春林,李梅,杨泽平,史国华.中国科学院光电技术研究所的自适应光学研究进展[J].光学学报,2011,31(9):64-72. 被引量:50
  • 2Matson C L,Borelli K,Jefferies S, et al. Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space ob- jects[-J-]. Applied Optics, 2009, 48(1) : 75-92.
  • 3Ayers G R, Dainty J C. Iterative blind deconvolution method and its applications[J]. Optical Letters, 1988,13(7)~ 547-549.
  • 4You Yuli, Kaveh M. A regularization approach to joint blur identification and image restoration[J~. IEEE Transactions on Image Processing, 1996, 5 (3) ..416-428.
  • 5杨阿锋,鲁敏,滕书华,孙即祥.基于MAP估计的自适应光学图像非对称多帧盲复原[J].计算机辅助设计与图形学学报,2014,26(6):861-869. 被引量:1
  • 6Tomono H, Aoki M, Iitaka T, et al. GPU based ac- celeration of first principles calculation[-J]. Journal of Physics.. Conference Series, 2010, 215(1): 012121.
  • 7韩博,周秉锋.GPGPU性能模型及应用实例分析[J].计算机辅助设计与图形学学报,2009,21(9):1219-1226. 被引量:16
  • 8Quesada-Barriuso P, Heras D B, Argtiello F. Effi- cient GPU asynchronous implementation of a water- shed algorithm based on cellular automata~C]. US: IEEE, 2012.

二级参考文献17

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2凌宁,张雨东,饶学军,李新阳,王成,胡弈云,姜文汉.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报,2004,24(9):1153-1158. 被引量:45
  • 3Owens J D, Luebke D, Govindaraju N, et al. A survey of general-purpose computation on graphics hardware [J]. Computer Graphics Forum, 2007, 26(1) : 80-113.
  • 4Pharr M, Fernando R. GPU Gems 2 [M]. Boston: Addison Wesley, 2005:493-495.
  • 5Fatahalian K, Sugerman J, Hanrahan P. Understanding the efficiency of GPU algorithms for matrix-matrix multiplication [C]//Proceedings of ACM SIGGRAPH/Eurographics Conference on Graphics Hardware, Grenoble, 2004: 133- 137.
  • 6Govindaraju N K, Larsen S, Gray J, et al. A memory model for scientific algorithms on graphics processors [C]// Proceedings of the ACM/IEEE Conference on Supercomputing, Tampa, 2006:1-6.
  • 7He B S, Govindaraju N K, Luo Q, etal. Efficient gather and scatter operations on graphics processors [C]//Proceedings of the ACM/IEEE Conference on Supercomputing, Reno, 2007:1-12.
  • 8Blythe D. The Direct3D 10 system [J]. ACM Transactions on Graphics, 2006, 25(3): 724-734.
  • 9Buck I, Foley T, Horn D, et al. Brook for GPUs: stream computing on graphics hardware [J]. ACM Transactions on Graphics, 2004, 23(3): 777-786.
  • 10Nvidia Corp. CUDA 2.0 Programming Guide [OL]. [2008-09-15]. http://www. nvidia. com/object/cuda_develop.html.

共引文献64

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部