期刊文献+

新型抽锭电渣重熔冷却过程的多物理场耦合模拟 被引量:1

MULTI-PHYSICAL FIELD COUPLING SIMULATION OF THE COOLING PROCESS OF NEWLY-DEVELOPED PUMPING ESR
下载PDF
导出
摘要 针对新型抽锭电渣重熔工艺,基于金属.热一力多物理场耦合理论框架,建立了抽锭冷却过程的数值分析模型,讨论了尺寸为φ120mm电渣锭在冷却过程中的温度场、组织场和应力场的演变规律。研究表明:电渣锭在冷却过程中,心部和中部冷却速度最快可达到3~4℃/s,温度梯度保持在10~12℃/mm之间,表面温度变化剧烈且出现返温现象,最大冷却速度可达14.5℃/s;在抽锭过程中,电渣锭表面、中部和心部的应力整体上呈现上升趋势,电渣锭最大应力不超过1200MPa。模拟结果和实测值吻合,表明本文建立的数值分析模型能较好地反映新型抽锭电渣重熔的冷却过程,可用于指导生产实际。 By taking a newly-developed pumping ESR process as the research object, a numerical model based on the metallo-thermo-mechanical coupled theory was established to simulate the cooling process of pumping electroslag ingot, to explore the evolution rule of temperature, microstructure and stress in the electroslag ingot with a diameter of 6120 mm during the cooling process. The results showed that, during the cooling process, the maximum cooling rate at the center and middle of electroslag ingot could achieve almost 3 - 4℃/s and its temperature gradient maintained up to 10 - 12 ℃/mm, while the temperature at the surface of electroslag ingot experienced a dramatic change and caused a reverse phenomenon of temperature, and its maximum cooling rates was about 14.5℃/s. The stress at the center, middle and surface of electroslag ingot presented an increasing trend during the pumping process and its maximum effective stress was no more than 1 200 MPa. The predicted results were coincidence well with the experimental data, which indicated that the numerical model established in the present study could effectively reproduce the cooling behavior of newly-developed pumping ESR process and it could be used to guide the production.
出处 《上海金属》 CAS 北大核心 2016年第1期69-73,共5页 Shanghai Metals
基金 国家青年科学基金(No.51401117) 国家自然科学基金(No.51171104) 上海大学创新基金
关键词 新型抽锭电渣重熔 冷却过程过 冷奥氏体 数值模拟 Newly-Developed Pumping ESR, Cooling Process, Overcooling Austenite, Numerical Simulation
  • 相关文献

参考文献14

  • 1Wiebner M, Leisch M, Emminger H, et al. Phase transformation study of a high speed steel powder by high temperature X- ray diffraction [ J]. Materials Characterization, 2008, 59 : 937-943.
  • 2Sitek W, Dobrzanski L A, Zaclona J. The modelling of high- speed steels' properties using neural networks [ J ]. Journal of Materials Processing Technology, 2004, 157-158: 245-249.
  • 3Jeffrey Yanke, Kyle Fezi, Rodney W, et al. Simulation of slag- skin formation in electroslag remelting using a Volume-of-Fluid method [J]. Numerical Heat Tra-Appl, 2015, 67(3) : 268-292.
  • 4Liu F B, Jiang Z H, Li H B, et al. Mathematical modelling of eleetroslag remelting 1791 hollow ingots process with multi- electrodes [ J ]. Ironmaking & Steelmaking, 2014, 41 (10) : 791-800.
  • 5Dong Y W, Zheng L C, Jiang Z H. Mathematical moddling of producing hollow ingot by electroslag casting with liquid metal ~J]. Ironmaking & Steelmaking, 2013, 40(2) : 153-158.
  • 6Holzgruber W, Holzgruber H. Production of high quality billets with the new electroslag rapid remehing process [ J ]. MPT- International, 1996, 19(5) : 8-50.
  • 7李正邦.21世纪电渣冶金的新进展[J].特殊钢,2004,25(5):1-5. 被引量:39
  • 8臧喜民,姜周华,张天彪,王湘平.电渣连铸技术的开发[J].中国冶金,2006,16(3):10-13. 被引量:6
  • 9车向前,李正邦.控制电渣重熔高速钢凝固质量的研究[J].钢铁研究总院学报,1987(7):37-45.
  • 10李绍宏,吴晓春,谢殷子,等.一种提高电渣重熔电渣锭质量的新型渣系:CN101709384A[P].2010.05-19.

二级参考文献41

  • 1李正邦.21世纪电渣冶金的新进展[J].特殊钢,2004,25(5):1-5. 被引量:39
  • 2[5]姜周华.电渣冶金的物理化学及冶金现象[M].沈阳:东北大学出版社,2000.
  • 3[2]Holzgruber W,Holzgruber H.Production of High Quality Billets With the New Electroslag Rapid Remelting Process[J].MPT International,1996,19(5):48-50.
  • 4[3]Anon.High Quality Billets by Electroslag Rapid Remelting (ESRR) [J].Steel Times International,1997,21 (4):20-25.
  • 5Koisten D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[ J]. Acta Metallurgica Et Materialia, 1959,7 : 59 - 60.
  • 6Greenwood G W, Johnson R H. The deformation of metals under small stresses during phase transformations [ J ]. Proceedings-Royal Society. Mathematical, Physical and Engineering Sciences, 1965,283 ( 1394 ) : 403 - 422.
  • 7Denis S, Gautier E, Simon A, et al. Stress-phase transformation interactions-basic principles, modeling and calculation of internal stress [ J ]. Material Science and Technology, 1985,1 (10) : 805 - 814.
  • 8Denis S, Sjostrom S, Simon A. Coupled temperature, stress, phase-transformation calculation model numerical illustration of the internal stress evolution during cooling of a eutectoid carbon steel cylinder [ J ]. Metallurgical Transaction, 1987,18 (7) : 1203 - 1212.
  • 9Lakhdar Taleb, Nathalie Cavallo, Francois Waeekel. Experimental analysis of transformation plasticity [ J ]. International Journal of Plasticity, 2001,17 : 1 - 20.
  • 10Coret M,Calloch S,Combescure A. Experimental study of the phase transformation plasticity of 16MND5 low carbon steel under multiaxial loading [ J]. International Journal of Plasticity,2002,18 : 1707 - 1727.

共引文献75

同被引文献23

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部