期刊文献+

基于引力搜索算法的RSSI 模型优化与在消防定位中的应用

Application of RSSI Model Optimization Based on Gravitational Search Algorithm in Fire Location
下载PDF
导出
摘要 RSSI定位方法成为近年来研究的热点问题。用极大似然估计法得到RSSI测距模型的修正参数,再使用最小二乘法求取所需节点的估计坐标,再通过引力搜索算法对最小二乘法的初步坐标估计结果和参数进行优化和修正,其算法不仅可以提高定位节点坐标的精度,还可以实现对于定位模型参数的动态跟踪变化。将设计的RSSI定位系统的应用程序移植消防定位系统中,通过接收网关节点从串口传递进来的参考节点的位置信息和参考节点接收到定位节点广播的RSSI值,通过提出的算法求解出最终的定位节点的位置。最后,在消防定位的实验结果中验证定位模型的参数优化结果,设计的RSSI定位系统总体误差较小,得到的参数反映了环境的变化,取得了预期的效果。 The RSSI positioning method has been a research hot topic in recent years.In this paper,the corrected parameter of RSSI distance measurement model is calculated by using the maximum likelihood method,and the coordinates of the nodes required are calculated by using the least square method,then the coordinates and parameters estimated by using the least square method preliminary are optimized and amended by using the gravitation search algorithm,which can not only improve the precision of the node coordinates,but also track the dynamic variation of the position model parameters.The application program of RSSI positioning system is embedded into the fire protection positioning system,and the position of the reference node coming from the serial port is received by the network node,The RSSI value of the position node in received by the reference node,and the final position of positioning node is calculated by using the presented algorithm.Finally,the parameter optimization results of the positioning model are verified according to the results of the fire protection positioning.The overall error of the RSSI positioning system is less,and the parameter can reflect that the change of the environment and the result is good as expected.
作者 杨勇
出处 《微型电脑应用》 2016年第1期66-69,共4页 Microcomputer Applications
关键词 定位 引力搜索算法 消防 无线网络 Positioning Gravitation Search Algorithm Fire Protection Wireless Network
  • 相关文献

参考文献8

  • 1谢晓佳,程丽君,王勇.基于Zigbee网络平台的井下人员跟踪定位系统[J].煤炭学报,2007,32(8):884-888. 被引量:68
  • 2倪瑛,戴娟.ZigBee定位技术的研究[J].南京工业职业技术学院学报,2013,13(2):43-46. 被引量:10
  • 3魏立线,姚武军,钟卫东,杨晓元.基于LQI的WSN自适应差错控制方案[J].计算机工程,2011,37(21):64-67. 被引量:3
  • 4章坚武,张璐,应瑛,高锋.基于ZigBee的RSSI测距研究[J].传感技术学报,2009,22(2):285-288. 被引量:120
  • 5Sahu P K, Wu E H-K, Sahoo J. DuRT: Dual RSSI Trend Based Localization forWireless Sensor Networks [J]. IEEE SENSORS JOURNAL, 2013, 13(8): 3115-3123.
  • 6Kuo R J, Shieh M C, Zhang J W, et al. The application of an artificial immune system-based back-propagation neural network with feature selection to an RFID positioning system[J]. Robotics and Computer-lntegrated Manutiacturing,2013, 29:431-438.
  • 7Marti J V, Sales J, Marin R, et al. Multi-Sensor Localization and Navigation for Remote Manipulation in Smoky Areas[J]. Int J Adv Robotic Sy, 2013, 10(21 1): 1-8.
  • 8Blumrosen G, Hod B, Anker T, et al. Enhanced calibration technique lbr RSSl-based ranging in body area networks[J]. Ad Hoc Networks, 2013, 11:555-569.

二级参考文献18

共引文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部