期刊文献+

面向客户个性化需求的交互式遗传算法 被引量:10

Interactive genetic algorithm based on customer demand
下载PDF
导出
摘要 针对交互式遗传算法(IGA)中的评价噪声问题,提出犹豫度的概念,建立犹豫度调整机制,并使用删除策略和修改策略来处理形成初始种群以及交叉、变异过程中产生的约束不满足个体.通过对汽车操控台的概念设计问题进行建模,建立人性化交互界面用以验证本论文提出的方法体系的先进性和合理性.实验表明,此求解算法能够有效的降低评价噪声,加速收敛,降低疲劳度,提高结果的满意度. To solve the problem of evaluation noise in the interactive genetic algorithm ( IGA), the concept of hesitancy degree is put forward, hesitancy degree adjustment mechanism is set up, and the deletion strategy and modification strategy are applied to handle the unsatisfied individuals generated in the process of initial population generation, crossover and mutation. By emulating the concept design of car console, the interactive interface with humanization is established to validate the advance and rationality of the method system brought forward in the paper. The experiment shows that the IGA can effectively reduce the evaluation noise, speed up the convergence, lower the fatigue degree and increase users' satisfaction about the result.
出处 《管理科学学报》 CSSCI 北大核心 2016年第1期24-34,共11页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(71201115)
关键词 交互式遗传算法 犹豫度 评价噪声 约束处理 疲劳度 interactive genetic algorithm hesitancy degree evaluation noise constraint handling fatigue degree
  • 相关文献

参考文献23

  • 1唐加福,汪定伟,刘士新,Richard Y K Fung.产品优化设计的用户满意模型[J].管理科学学报,2003,6(3):46-51. 被引量:6
  • 2经有国,但斌,张旭梅,郭钢.MC半结构化客户需求信息表达与处理方法[J].管理科学学报,2011,14(1):78-85. 被引量:20
  • 3Ozcelik F, Sarac T. A genetic algorithm extended modified sub-gradient algorithm for cell formation problem with alternative routings [ J ]. International Journal of Production Research, 2012, 50 ( 15 ) : 4025 - 4037.
  • 4Huang G Q, Li L, Schulze L. Genetic algorithm-based optimization method for product family design with multi-level com- monality [ J ]. Journal of Engineering Design, 2008, 19 (5) : 401 - 416.
  • 5Haq A N, Ramanan T R. A hybrid neural network-genetic algorithm approach for permutation flow shop scheduling[ J]. In- ternational Journal of Production Research, 2010, 48(14): 4217-4231.
  • 6邹昊飞,夏国平,杨方廷.基于两阶段优化算法的神经网络预测模型[J].管理科学学报,2006,9(5):28-35. 被引量:11
  • 7Kuo R J. Integration of genetic algorithm and particle swarm optimization for investment portfolio optimization[J]. Applied Mathematics & Information Sciences, 2013, 7 (6) : 2397 - 2408.
  • 8Gao Zhijun. A genetic ant colony algorithm for routing in CPS heterogeneous network[ J]. International Journal of Computer Applications in Technology, 2013, 48 (4) : 288 - 296.
  • 9宋莉波,徐学军,孙延明,查靓.一种求解柔性工作车间调度问题的混合遗传算法[J].管理科学学报,2010,13(11):49-54. 被引量:20
  • 10Yoon D M, Kim K J. 3D Game Model and Texture Generation using Interactive Genetic Algorithm[ C ]. WASA' 12 Pro- ceedings of the Workshop at SIGGRAPH Asia, Singapore, 2012:53 -58.

二级参考文献60

  • 1李晓峰,徐玖平,王荫清,贺昌政.BP人工神经网络自适应学习算法的建立及其应用[J].系统工程理论与实践,2004,24(5):1-8. 被引量:76
  • 2樊智,张世英.非线性协整建模研究及沪深股市实证分析[J].管理科学学报,2005,8(1):73-77. 被引量:21
  • 3谭建荣,齐峰,张树有,戴若夷.基于模糊客户需求信息的设计检索技术的研究[J].机械工程学报,2005,41(4):79-84. 被引量:12
  • 4Mastrolilli M, Gambardella LM. Effective neighborhood functions for the flexible job shop problem [ J ]. Journal of Scheduling, 2000, 3(1) : 3 -20.
  • 5F. Pezzella, G. Morganti, G. Ciaschetti. A genetic algorithm for the flexible job-shop scheduling problem [ J ]. Computers & Operations Research, 35 (2008) : 3202 -3212.
  • 6Guohui Zhang, Yang Shi, Liang Gao. A genetic algorithm and tabu search for solving flexible job shop schedules [ J ]. 2008 International Symposium on Computational Intelligence and Design, 2008:369 -372.
  • 7Jie Gao, Linyan Sun, Mitsuo Gen. A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems [ J ]. Computers & Operations Research, 35 (2008) : 2892 - 2907.
  • 8Nhu Binh Ho, Joc Cing Tay, Edmund M.-K. Lai. An effective architecture for learning and evolving flexible job-shop schedules [ J ]. European Journal of Operational Research, 179 (2007) : 316 - 333.
  • 9HO N B, Tay J C. GENACE : An efficient cultural algorithm for solving the flexible job-shop problem [ C ]//Proceedings of the Congress on Evolutionary Computation CEC, 2004, 1759 -1766.
  • 10KacemI, Hammadi S, Borne P. Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C 2002; 32( 1 ) : 1 -13.

共引文献53

同被引文献87

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部