期刊文献+

基于日度低频价格的波动率预测 被引量:11

Volatility forecasting based on daily frequency prices
下载PDF
导出
摘要 利用作者提出的GARCH-X的框架,将以往文献中提出的各种基于金融资产的最高、最低、开盘和收盘等低频价格信息的波动率静态估计,统一地扩展成对波动率的动态预测模型.通过对上证指数近十几年数据的实证分析,并借助于对波动率的高频估计和预测评估的一些最新研究成果,本文揭示出合理地利用价格极差及开盘价的信息可以显著地提高对波动率及风险价值的预测能力. Within the GARCH-X framework put forward by the authors, this paper considers several new vola- tility forecasting models based on daily high, low, opening and closing prices of financial assets. These models combine the GARCH modeling procedure and the results of volatility estimation in the early literature, and therefore extend the static estimators into the dynamic driving factors of volatility. Empirical results with the daily prices of the Composite Index of Shanghai stock market over the last decade reveal that the forecasting performances of these new models for volatility and Value-at-Risk are significantly better than the traditional GARCH model.
出处 《管理科学学报》 CSSCI 北大核心 2016年第1期60-71,共12页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(71271007)
关键词 波动率 风险价值 极差 GARCH—X模型 预测 volatility Value-at-Risk range GARCH-X model forecast
  • 相关文献

参考文献36

  • 1Andersen T, Bollerslev T, Diebold F, et al. Modeling and forecasting realized volatility [ J ]. Econometrica, 2003, 71 (2) : 579 - 625.
  • 2Zhang L, Mykland P A, Ait-Sahalia Y. A tale of two time scales : Determining integrated volatility with noisy high-frequency data[ J]. Journal of the American Statistical Association, 2005, 100 (472) : 1394 -141.
  • 3Parkinson M. The extreme value method for estimating the variance of the rate of return[ J]. The Journal of Business, 1980, 53(1) : 61 -65.
  • 4Garman M, Klass M. On the estimation of security price volatilities from historical data[ J ]. The Journal of Business, 1980, 53(1) : 67 -78.
  • 5Chou R. Forecasting financial volatilities with extreme values: The conditional auto-regressive range (CARR) model [ J ]. Journal of Money Credit and Banking, 2005, 37 (3) : 561 -582.
  • 6李红权,汪寿阳.基于价格极差的金融波动率建模:理论与实证分析[J].中国管理科学,2009,17(6):1-8. 被引量:14
  • 7孙便霞,王明进.基于价格极差的GARCH模型[J].数理统计与管理,2013,32(2):259-267. 被引量:15
  • 8Fuertes A, Olmo J. Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction [ J ]. Interna- tional Journal of Forecasting, 2013, 29( 1 ) : 28 -42.
  • 9Rogers L, Satchell S. Estimating variance from high, low and closing prices[ J]. The Annals of Applied Probability, 1991, 1(4) : 504 -512.
  • 10Patton A. Volatility forecast comparison using imperfect volatility proxies[ J]. Journal of Econometric, 2011, 160(2) : 246 - 256.

二级参考文献130

共引文献59

同被引文献78

引证文献11

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部