期刊文献+

EGFR通过提高mTOR活性增强中枢神经元生长能力 被引量:7

EGFR enhances the growth activity of central neurons by increasing mTOR activity
下载PDF
导出
摘要 目的:探寻EGFR对中枢神经元生长活性的影响及机制。方法:构建EGFR过表达(p LEGFP-EGFR)和RNAi干扰(vshRNA-EGFR)的慢病毒载体和质粒,作用于体外培养的神经元。Western-blot检测神经元不同EGFR表达水平下胞内微管蛋白(β-Tubulin)轴突蛋白(Tau)和神经丝蛋白(NF)的表达以及PI3K/Akt/m TOR的活化状态。利用m TOR体外抑制剂Rapamycin进一步观察EGFR的作用途径。结果:EGFR上调的同时观察到神经元中Tau、β-tubulin和NF蛋白表达水平和m TOR活性增加,同时PI3K/AKt通路活性在增强。用100μmol/L的Rapamycins处理24 h后,Tau、β-tubulin和NF表达水平明显下调,同时p-m TOR和p-Akt活性降低,神经元生长活性被抑制。结论:体外EGFR能通过PI3K/Akt信号通路激活,上调m TOR表达,从而促进神经元的生长活性。 Objective: To investigate the effect of EGFR on the growth activity of central neurons. Methods: Neurons were cultured with different EGFR expression levels. Rapamycin was used as an inhibitor of mTOR. Axon protein Tau, neuron proteins β-tubulin and neurofilament were assessed to evaluate the extent of the neurons growth. Expressions of EGFR, p-mTORSer^244s and p-AktSer473 were detected using Western blot for analyzing the underlying mechanisms. Results: Tau, β-tubulin and NF protein were up-regulated when EGFR was overexpressed, and down-regulated after EGFR was blocked. At the same time, the activity of PI3K/Akt pathway show the same trend. The up-regulation effects of growth activity of central neurons by EGFR were blocked by rapamycin( 100μmol/L treated for 24h). Conclusion: EGFR could rely on the activation of PI3K/Akt signal pathway, raise the expression of mTOR, finally promote the mentonal growth.
出处 《神经解剖学杂志》 CAS CSCD 北大核心 2016年第1期7-12,共6页 Chinese Journal of Neuroanatomy
基金 广东医学院博士人员科研启动项目(2XB14018) 湛江市科技计划项目(2013B01090)
  • 相关文献

参考文献12

  • 1Martin B, Zubair A, Michael R. Epidermal growth factor receptor antagonists and CNS axon regeneration: Mechanisms and controver-sies [ J ]. Brain Research Bulletin, 2011, 19 : 289 - 299.
  • 2蒋娟,杨双汇,王秀娇,潘柏宏.表皮生长因子及其受体在中枢神经系统损伤和修复中的作用[J].国际病理科学与临床杂志,2013,33(2):179-184. 被引量:8
  • 3Liu K, Lu Y, Lee JK, et al. PTEN Deletion Enhances the Regenera- tive Ability of Adult Cortico-spinal Neurons [ J ]. Nat Neurosci, 2010, 13:1075-1081.
  • 4Whittington RA, Vir6g L, Gratuze M, et al. Dexmedetomidine in- creases tan phosphorylation under normothermic conditions in vivo and in vitro [ J ]. Neurobiol Aging, 2015, 36:2414 - 2428.
  • 5Ananthakrishnan L, Szaro BG. Transcriptional and translational dy- namics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration[ J]. Brain Res, 2009, 1250 : 27 - 40.
  • 6Lei ZN, Brizzee G, Johnson G. BAG3 facilitates the clearance of en- dogenous tan in primary neurons[ J]. Neurobiol Aging, 2015, 36: 241 - 248.
  • 7Xu C, Liu CX, Liu L, et al. Rapamycin prevents cadmium-induced neuronal cell death via targeting both mTORC1 and mTORC2 path-ways[J]. Neuropharmacology, 2015, 97:35 -45.
  • 8Abe N, Borson S, Gambello M, et al. mTOR activation increases ax- onal growth capacity of injured peripheral nerves[J~. J Bio Chem, 2010, 21 : 1021 - 1026.
  • 9Don A, Tsang CK, Kazdoba, TM, et al. Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries[J]. Drug Discovery Today, 2012, 17:861 -868.
  • 10Christie KJ, Webber CA, Martinez JA, et al. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons [ J]. Neuroscience, 2010, 30 : 9306 - 9315.

二级参考文献20

  • 1Downward J, Parker P, Waterfield MD. Autophosphorylation sites onthe epidermal growth factor receptor[J]. Nature, 1984, 311(5985):483-485.
  • 2Schlessinger J. Ligand-induced, receptor-mediated dimerization andactivation ofEGF receptor[j]. Cell, 2002,110(6): 669-672.
  • 3Sharp K, Yee KM, Steward O. A reassessment of the effects of treatmentwith an epidermal growth factor receptor (EGFR) inhibitor onrecovery of bladder and locomotor function following thoracic spinalcord injury in rats[j]. Exp Neurol, 2012,233(2): 649-659.
  • 4Ramis G, Thomas-Moya E, Fernandez DMS, et al. EGFR inhibitionin glioma cells modulates Rho signaling to inhibit cell motility andinvasion and cooperates with temozolomide to reduce cell growth [J].PLoS One, 2012,7(6): e38770.
  • 5Cunningham C. Microglia and neurodegeneration: The role of systemicinflammation[J]. Glia, 2013,61(1): 71-90.
  • 6Martin R, Cordova C, Nieto ML. Secreted phospholipase A2-IIA-induced a phenotype of activated microglia in BV-2 cells requiresepidermal growth factor receptor transactivation and proHB-EGFshedding[j]. J Neuroinflammation; 2012,9(1):154-174.
  • 7Xia M; Zhu Y. Signaling pathways of ATP-induced PGE2 release inspinal cord astrocytes are EGFR transactivation-dependent[j]. Glia2011,59(4):664-674.
  • 8Ano Y, Sakudo A, Onodera T. Role of microglia in oxidative toxicityassociated with encephalomycarditis virus infection in the centralnervous system[j]. IntJ Mol Sci, 2012,13(6):7365-7374.
  • 9Ding WX, Shen HM, Ong CN. Critical role of reactive oxygen speciesand mitochondrial permeability transition in microcystin-inducedrapid apoptosis in rat hepatocytes[j]. Hepatology, 2000, 32(3):547-555.
  • 10Saxena T, Gilbert J, Stelzner D, et al. Mechanical characterization of theinjured spinal cord after lateral spinal hemisection injury in the rat[j].jNeurotrauma, 2012,29(9):1747-1757.

共引文献7

同被引文献66

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部