期刊文献+

基于随机森林的WorldVew2i影像建筑物精细提取 被引量:5

Precise Extraction of Buildings' Information in WorldView2 Images Based on Random Forests
下载PDF
导出
摘要 针对研究区建筑物大小不一、排列复杂多样、颜色和材质差异较大的实际情况,提出了一种基于面向对象的城区高分辨率影像建筑物信息精细提取方法。该方法考虑了不同颜色建筑物之间以及建筑物与其他地物的特征差异,将建筑物细分为4种子类型,在对高分辨率影像进行分割的基础上,充分挖掘目标对象的光谱、几何、纹理信息等特征,利用随机森林算法对建筑物进行提取并对特征的重要性进行评估。结果发现,精细提取场景下的波段3比值、PCA3均值、PCA4均值、NDVI等特征的重要性较建筑物作为一个类别提取的常规方法出现了较为显著的上升,表明精细提取场景下的影像特征得到了更为充分的应用。使用该方法提取建筑物面积的用户精度和生产者精度较常规方法提高了12.16%和4.09%,为复杂情况下的高分辨率影像建筑物信息提取提供了新的途径。 In view of the diversity of materials and spectra in study area, this article presented a precise extraction method of buildings' information using object-based image analysis. Considering the internal feature differences of buildings, buildings were subdivided into 4 types. And random forests method was used to extract buildings' information and evaluate features' importance. The results show that, the importance of Ratio Layer3, PCA3, PCA4 and NDVI significantly increased in the precise extraction scenarios. It means the feature has been fully utilized. Meanwhile, the producer accuracy and user accuracy of buildings' information are 95.4% and 89.0%, which increase by 12.16% and 4.09% compared with the conventional method. This article provided a new method for buildings' information extraction in complex scenarios.
作者 范驰 江洪
出处 《地理空间信息》 2016年第1期58-62,5,共5页 Geospatial Information
基金 国家自然科学基金资助项目(61190114 41171324) 科技部国家科技基础条件平台资助项目(2005DKA32300) 高等学校博士学科点专项科研基金资助项目(20110091110028) 江苏高校优势学科建设工程资助项目
关键词 建筑物提取 随机森林 特征重要性 精度评价 WorldView2影像 buildings' information extraction random forests features' importance accuracy assessment WorldView2 images
  • 相关文献

参考文献8

  • 1黄昕,张良培,李平湘.融合形状和光谱的高空间分辨率遥感影像分类[J].遥感学报,2007,11(2):193-200. 被引量:49
  • 2许燕,段福洲,段光耀.面向对象的无人机影像分类研究[J].地理空间信息,2014,12(5):28-30. 被引量:6
  • 3Lafarge F,Descombes X,Zerubia J,et al.Automatic Building Extraction from DEMs Using an Object Approach and Application to the 3D-City Modeling[J].ISPRS Journal of Photograrnmetry and Remote Sensing, 2008,63(3): 365-381.
  • 4Sirmacek B,Unsalan C.A Probabilistic Framework to Detect Buildings in Aerial and Satellite Images[J].Geoscience and Remote Sensing,lEEE Transactions on,2{)11,49(1):211-221.
  • 5Myint S W,Gober P,Brazel A,et al.Per-pixel vs.Object- based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery[J].Remote Sensing of Environment,2011,115(5): 1 145-1 161.
  • 6龚健雅,姚璜,沈欣.利用AdaBoost算法进行高分辨率影像的面向对象分类[J].武汉大学学报(信息科学版),2010,35(12):1440-1443. 被引量:17
  • 7Breiman L.Random Forests[J].Machine Learning,2001,45(1):5-32.
  • 8Ghimire B,Rogan J,Miller J.Contextual Land-cover Classification: Incorporating Spatial Dependence in Land-cover Classification Models Using Random Forests and the Getis Statistic[J].Remote Sensing Letters,2010,1(1):45-54.

二级参考文献27

  • 1汪闽,骆剑承,明冬萍.高分辨率遥感影像上基于形状特征的船舶提取[J].武汉大学学报(信息科学版),2005,30(8):685-688. 被引量:29
  • 2宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-5. 被引量:136
  • 3陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:245
  • 4Baatz M, Schape A. Multiresolution Segmentation: an Optimization Approach for High Quality Multi scale Image Segmentation[C]. Angewandte Geographische Information Sverarbeitung Ⅻ, Karlsruhe, 2000.
  • 5Quattrochi D A, Goodchild M F. Scale in Remote Sensing and Gis[M]. Boca Raton, FL:CRC Press, 1997.
  • 6Freund Y, Schapire R. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[J].Journal of Computer and System Sciences, 1997, 55(1): 119-139.
  • 7Schapire R. The Boosting Approach to Machine Learning: an Overview[M]. New York: Springer- Verlag, 2003.
  • 8Freund Y, Schapire R, Abe N. A Short Introduction to Boosting [J].Journal-Japanese Society for Artificial Intelligence, 1999, 14:771- 780.
  • 9Maclin R, Opitz D. An Empirical Evaluation of Bagging and Boosting[C]. The Fourteenth National Conference on Artificial Intelligence, San Francisco, 1997.
  • 10Peng H, Long F, Ding C. Feature Selection Based on Mutual Information: Criteria of Ma~dependen ey, Max-relevance, and Min redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1 226 -1 238.

共引文献69

同被引文献74

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部