期刊文献+

基于LVQ工况识别的混合动力汽车自适应能量管理控制策略 被引量:18

Adaptive Energy Control Strategy of HEV Based on Driving Cycle Recognition by LVQ Algorithm
下载PDF
导出
摘要 为提高混合动力汽车的燃油经济性,选取6种典型行驶工况代表"市区"、"郊区"和"高速公路"3类主要工况,采用基于规则的模糊能量管理控制策略,以整车燃油经济性为目标,在3类主要工况下用改进型粒子群优化算法优化发动机联合工作曲线与发动机关闭曲线系数,得到相应的优化后的隶属度函数的参数;运用学习向量量化(LVQ)算法识别车辆运行工况,动态选择相应的模糊控制策略,使混合动力汽车控制策略对选定的几种代表性工况具有自适应性,从而提高整车的燃油经济性。仿真对比结果表明,相比于传统混合动力汽车,燃油经济性提高了3.4%。 In order to reduce fuel consumption, six kinds of typical driving cycles were chosen to represent the "urban", "suburban" and "highway". And for vehicle fuel economy, based on fuzzy control strategy with rules, an improved PSO algorithm was adopted to optimize the engine working with motor curve factor and the engine shutting off curve factor, then the optimized parameters of membership function could be achieved under the above typical driving cycles. Furthermore, LVQ algo- rithm was adopted to recognize real-time driving cycle, the corresponding fuzzy control strategy could be chosen according to the recognition results, which maintained the adaptability for those driving cycles, and improved HEV^s fuel economy. Simulation results show that fuel economy adopted with this control strategy is improved by 3.4 %0 comparing to the traditional methods without cycle recogni- tion.
机构地区 重庆交通大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2016年第3期420-425,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51305473) 中国博士后科学基金资助项目(2014M552317) 重庆市基础与前沿研究计划资助项目(cstc2013jcyjA60007) 重庆市教委科学技术研究项目(KJ120421) 重庆市博士后研究人员科研项目特别资助(xm2014032)
关键词 混合动力汽车 工况识别 燃油经济性 粒子群优化算法 学习向量量化(LVQ)算法 hybrid electric vehicle(HEV) driving cycle recognition fuel economy particle swarm optimization(PSO) algorithm learning vector quantization(LVQ) algorithm
  • 相关文献

参考文献10

  • 1Williamson S S, Emadi A, Dewan A. Effects of Var- ying Driving Schedules on the Drive Train Efficiency and Performance Characteristics of a Parallel Diesel- Hybrid Bus[J].SAE Technical Paper, 2005-01-3477.
  • 2Sharer P, Leydier R, Rousseau A. Impact of Drive Cycle Aggressiveness and Speed on HEV's Fuel Consumption Sensitivity[J].SAE Technical Paper, 2007-01-0281.
  • 3Jeon Soon-Il, Jo Sung-Tae, Park Yeong-Il, et al.Multi-Mode Driving Control of a Parallel Hybrid Electric Vehicle Using Driving Pattern Recognition [-J-. Journal of Dynamic Systems, Measurement, and Control, 2002,124(1) :141-149.
  • 4Langari R, Won Jong-Seob. Intelligent Energy Man- agement Agent for a Parallel Hybrid Vehicle-Part I: System Architecture and Design of the Driving Situation Identification Process[J]. IEEE Transactions on Vehic ular Technology, 2005, 54(3): 925-934.
  • 5田毅,张欣,张良,张昕.神经网络工况识别的混合动力电动汽车模糊控制策略[J].控制理论与应用,2011,28(3):363-369. 被引量:32
  • 6Brooker A, Haraldsson K, Hendricks T, et al.AD- VISOR Documentation[EB/OL]. Colorado: Nation- al Renewable Energy Laboratory, 2002. http:// www.ctts.nrel.gov/analysis/advisor_doc/.html.
  • 7Wang R, Lukic S M. Review of Driving Conditions Prediction and Driving Style Recognition Based Con- trol Algorithms for Hybrid Electric Vehicles[C]// Vehicle Power and Propulsion Conference (VPPC), IEEE. Chicago,2011: 1-7.
  • 8Feng Lei, Liu Wenjia, Chen Bo. Driving Pattern Recognition for Adaptive Hybrid Vehicle Control [J].SAE Technical Paper, 2012-01-0742.
  • 9Jie Xing, Han Xuefeng, Ye Hui, et ai. Driving Cycle Recognition for Hybrid Electric Vehicle [C]//Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), IEEE Conference and Expo. Beijing, 2014: 1-6.
  • 10林歆悠,孙冬野.基于工况识别的混联式混合动力客车控制策略研究[J].中国机械工程,2012,23(7):869-874. 被引量:33

二级参考文献22

  • 1ERICSSON E.Independent driving pattern factors and their influence on fuel-use and exhaust emission factors[J].Transportation Research Part D,2001,6(5):325-341.
  • 2WILLIAMSON S S,EMADI A,DEWAN A.Effects of varying driving schedules on the drive train efficiency and performance characteristics of a parallel diesel-hybrid bus,SAE Paper,2005-01-3477[R].USA:Society of Automotive Engineers,2005.
  • 3DUOBA M,LOHSE-BUSCH H,BOHN T.Investigating vehicle fuel economy robustness of conventional and hybrid electric vehicles[R].Monaco:International Electric Vehicle Symposium,2004.
  • 4SHARER P,LEYDIER R,ROUSSEAU A.Impact of drive cycle aggressiveness and speed on hevs fuel consumption sensitivity,SAE Paper,2007-01-0281[R].USA:Society of Automotive Engineers,2007.
  • 5KUHLER M,KARSYENS D.Improved driving cycle for testing automotive exhaust emissions,SAE Paper,No.780650[R].USA:Society of Automotive Engineers,1978.
  • 6CRAUSER J P,MAURIN M,JOUMARD R.Representative kinematic sequences for the road trace in France,SAE Paper,No.890875[R].USA:Society of Automotive Engineers,1989.
  • 7BATA R,YACOUB Y,WANG W,et al.Heavy duty testing cycles:Survey and comparison,SAE Paper,No.942263[R].USA:Society of Automotive Engineers,1994.
  • 8JEON S I,JO S T,PARK Y I,et al.Multi-mode driving control of a parallel hybrid electric vehicle using driving pattern recognition[J].Journal of Dynamic Systems,Measurement,and Control,2002,124(1):141-149.
  • 9LANGARI R,WON J S.Intelligent energy management agent for a parallel hybrid vehicle-part i:system architecture and design of the driving situation identification process[J].IEEE Transactions on Vehicular Technology,2005,54(3):925-934.
  • 10Ericsson E.Independent Driving Pattern Factors andTheir Influence on Fuel-use and Exhaust Emission[J].Transportation Research,Part D,2001,6:325-341.

共引文献52

同被引文献108

引证文献18

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部