期刊文献+

一个随机利率下的家庭型联合保险随机模型 被引量:1

A home-based combined insurance stochastic model under random interest rates
下载PDF
导出
摘要 通过原点反射Brownian运动过程和Poisson过程对保险实务中的利息力随机性作了描述,在此基础上建立了一类由终身寿险、养老保险和储蓄还本3部分组成的可调整保险金额的家庭型联合保险随机模型,并给出了这类保险模型的年均衡保费的一般计算公式和死亡均匀分布(UDD)假设之下较简洁的年均衡保费计算公式,并用实例分析验证了本文结论的合理性和实用性.本文给出的保险模型对解决寿险公司合理收取保费、保险赔付和规避管理风险都具有一定的理论意义和实际应用价值. In this paper,first of all,the randomness of the interest force in insurance business is described by both reflex-origin Brownian motion and Poisson process.Secondly,on this basis,we establish a class of adjustable insurance amount home-based combined insurance double stochastic model by whole life insurance,pension insurance and savings payback part,and a general formula of yearly balanced insurance premiums in this type of insurance and a relatively simple formula of yearly balanced insurance premiums with uniform distribution death(UDD)hypothesis are given.Finally,the rationality and practicality for the conclusions are verified by some examples of the analysis process.Type of this insurance model is consistent with the actual situation,and it has important theoretical and practical value for insurance company to charge a reasonable premium,pay insurance and avoid the manage risk.
出处 《延边大学学报(自然科学版)》 CAS 2015年第4期285-291,共7页 Journal of Yanbian University(Natural Science Edition)
关键词 随机利率 利息力函数 联合保险随机模型 年均衡保费 stochastic interest rate interest force function combined insurance double stochastic model years balanced premium
  • 相关文献

参考文献14

  • 1Pollard J H.On fluctuating interest rates[J].Bulletin de 1’Association des Actuaries Belges,1971,66:68-97.
  • 2Dhaene J.Stochastic interest rates and auto regressive integrated moving average processes[J].ASTIN Bulletin,1989,19(1):131-138.
  • 3Gary Parker.Moments of the present value of the future of a portfolio of policies[J].Scandinavia Actuarial Journal,1994,1:53-67.
  • 4Beekman J A,Fuelling C P.Extra randomness in some annuities in certain annuity models and mortality randomness in some annuities[J].Insurance:Mathematics and Economics,1991,10:275-287.
  • 5Beekman J A,Fuelling C P.One approach to dual randomness in life insurance[J].Scandinavian Actuarial Journal,1993,76(2):173-182.
  • 6Pesand,Skinner.Duration for bonds with default risk[J].Journal of Banking and Finance,1974,21(4):1-16.
  • 7Hoedemakers T,Beirlant J,Goovaerts M J,et al.On the distribution of discounted loss reserves using generalized linear models[J].Scand Actuarial Journal,2005(1):25-45.
  • 8杨静平,吴岚.关于n年期寿险的极限分布(英文)[J].北京大学学报(自然科学版),1997,33(5):561-566. 被引量:1
  • 9王明姬,田乃硕.息力函数综合寿险模型[J].运筹与管理,2003,12(3):5-8. 被引量:7
  • 10郭春增,王秀瑜.随机利率下的寿险精算模型[J].统计与决策,2008,24(9):53-55. 被引量:14

二级参考文献43

  • 1沈正维.年金的若干变化形式[J].辽宁师范大学学报(自然科学版),2004,27(4):407-409. 被引量:2
  • 2何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 3伍超标.博士后研究报告《概率统计的若干应用问题》之4.4[M].华东师范大学,1995.84-92.
  • 4伍超标.博士后研究工作报告《概率统计的若干应用问题》之4.4[R].上海:华东师范大学,1995:84-92.
  • 5BEEKMAN J A, FUELLING C P. Interest and mortality randomness in some annuities [ J ]. Insurance: Mathematics and Economics, 1990, 9 (2- 3) : 185-196.
  • 6BEEKMAN J A, FUELLING C P. Extra randomness in certain annuity models [J]. Insurance: Mathematics and Economics, 1991, 10 (4) : 275-287.
  • 7BEEKMAN J A, FUELLING C P. One approach to dual randomness in life insurance [J]. Scandinavian Actuarial Journal, 1993, 76(2) : 173-182.
  • 8DE SCHEPPER A, DE VYLDER F, GOOVAERTS M, etal. Interest randomness in annuities certain [J]. Insurance: Mathematics and Economics, 1992, 11 (4) :271-282.
  • 9DE SCHEPPER A, GOOVAERTS M. Some further results on annuities certain with random interest [J].Insurance: Mathematics and Economies, 1992, 11 (4) : 283-290.
  • 10DE SCHEPPER A, GOOVAERTS M, DELBAEN F. The Laplace transform of annuities certain with exponential time distribution [J]. Insurance: Mathematics and Economics, 1992, 11(4) :291-294.

共引文献29

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部