期刊文献+

耳蜗神经网络中语音信号传输的刺激条件信息研究 被引量:1

Study of Specific-Stimulus Information for Transmission of Speech Signals in Cochlea Neural Networks
下载PDF
导出
摘要 在耳蜗神经网络对语音信号的刺激响应过程中,针对如何区分编码最有效率的语音信号分量问题,提出了刺激条件信息分布计算方法,研究了给定刺激条件下平均不确定性度的减小。实验结果表明:积分发放神经网络膜电位发放的刺激条件信息不仅能够从统计意义上给出平均互信息的大小,而且清晰地表明信号中各分量的编码效率,确定输入信号中对于互信息量起主要作用的事件分量范围以及内部噪声的可利用性,证实噪声强度与最大刺激条件信息量之间的非单调关系,这些研究结果为进一步探索人工耳蜗动作电位发放的解码方案提供了理论依据。 For decoding information contained in the cochlea neural networks responses to speech signals, it is interesting to address which parts of input stimuli are more efficient. In this paper, the stimulus-specific information associated with a particular stimulus will be adopted to study the decrease of average uncertainties, and its calculation method is developed. We use a leaky in- tegrate-and-fire model to capture the responses of cochlea neurons to the input speech signal, and calculate the stimulus-specific information caused by each speech signal part. It is shown that the weighted average of stimulus-specific information over the stimulus ensembles yields the mutual information, and the stimulus-specific information is also useful in clearly indentifying the stimuli that are significantly efficient to the cochlea neural network. Moreover, the stimulus-specific information can not only determine which signal component mainly contributes to the mutual information, but also confirms the availability of internal noise in the neural networks. There is a non-monotonic relationship between the noise intensity and the maximum stimulus-specific information. These results indicate that the applicability of the integrate-and-fire neuron model for current cochlear implant decoding technology deserves to be further investigated.
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2015年第4期104-108,共5页 Complex Systems and Complexity Science
基金 山东省科技发展计划项目(2014GGX101031)
关键词 耳蜗神经网络 语音信号 积分发放神经元 刺激条件信息 cochlea neural network speech signal integrate-and-fire model stimulus-specific information
  • 相关文献

参考文献14

  • 1Borst A, Theunissen F E. Information theory and neural eoding[J]. Nature Neuroscience, 1999, 2(11):947 - 957.
  • 2Arcas B A Y, Fairhall A L, Bialek W. What can a single neuron compute[J].Advances in Neural Information Processing Systems, 2000, 13(1) :75 -81.
  • 3DeWeese M R, Meister M. How to measure the information gained from one symbol[J]. Network: Computation in Neural Systems. Neural Syst, 1999, 10(4): 325-340.
  • 4Butts D A. How much information is associated with a particular stimulus?[J]. Network: Computation in Neural Systems, 2003, 14:177 - 187.
  • 5Butts D A, Goldman M S. Tuning curves, neuronal variability and sensory coding[J]. PLOS Biology, 2006, 4(4) : 639 - 646.
  • 6Montgomery N, Wehr M. Auditory cortical neurons convey maximal stimulus-specific information at their best frequency[J]. The Journal of Neuroscience, 2010, 30(40): 13362 - 13366.
  • 7Stocks N G. The application of suprathreshold stochastic resonance to cochlear implant coding[J]. Flucatuation and Noise Letters, 2002, 2(3) 169 - 181.
  • 8Stocks N G. Suprathreshold stochastic resonance in multilevel threshold systems[J]. Physical Review Letters, 2000, 84(11): 2310- 2313.
  • 9祁明,许丽艳,季冰,段法兵.周期性语音信号传输的超阈值随机共振研究[J].复杂系统与复杂性科学,2013,10(3):31-36. 被引量:5
  • 10Chacron M J, Longtin A, Pakdaman K. Chaotic firing in the sinusoidally forced leaky integrate-and fire model with threshold fatigue[J]. Physi ca D.- Nonlinear Phenomena, 2004, 192(1/2) : 138 - 160.

二级参考文献31

  • 1Zeng FG, Rebscher S, Harrison W, et al. Cochlear implants: system design, integration, and evaluation [J]. IEEE Rev Biomed Eng, 2008, 1: 115-42.
  • 2Vandali AE, van Hoesel R. A portable programmable digital sound processor for cochlear implant research [J]. IEEE Transa Rehabil Eng, 1993, 1(2): 94-100.
  • 3Morris LR, Barszczewski P. Algorithm s, hardware, and software for a digital signal processor microcomputer-based speech processor in a multielectrode cochlear implant system [J]. IEEE Trans Biomed Eng, 1989, 36(6): 573-84.
  • 4Blamey PJ, Dowell RC, Clark GM, et al. Acoustic parameters measured by a formant-estimating speech processor for a multiple- channel cochlear implant[J]. J Acoust Soc Am, 1987, 82(1): 38-47.
  • 5蒋涛,曾凡钢.听觉科学概论[M].北京:中国科学技术出版社,2005:177-200.
  • 6Clark GM. Cochlear implants:future research directions [J]. Ann Otol Rhinol Laryngnl, 1995, 104(suppl.166): 22-27.
  • 7Clark GM. Cochlear implants: climbing new mountains the Graham Fraser memorial lecture 2001 [J]. Cochlear Implants Int, 2001, 2(2): 75-97.
  • 8Vermeire K, Anderson I, Flynn M, et al. The influence of different speech processor and hearing aid settings on speech perception outcomes in electric acoustic stimulation patients [J]. Ear Hear, 2008, 29(1): 76-86.
  • 9Luo X, Fu Q J, Wei CG, et al. Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users[J]. Ear Hear, 2008, 29(6): 957-70.
  • 10Sit JJ, Simonson AM, Oxenharn A J, et al. A low-power asynchronous interleaved sampling algorithm for cochlear implants that encodes envelope and phase information[J]. IEEE Trans Biomed Eng, 2007, 54(1): 138-49.

共引文献4

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部