摘要
研究具有故障边的5元n立方体的两条不交路覆盖问题。用归纳假设法证明了:若Q5n的边故障集F中至多有2n-4条边,对于Q5n中任意四个顶点a,b,c,d,则Q5n-F存在两条顶点不交的覆盖路P1和P2,这里P1连接a和b,P2连接c和d.
The paper studies the problem of 2-disjoint paths cover of 5-ary n-cube. Let F be any subset of edges with |F|≤2n-4, the following result is obtained. Assuming that a,b,c and d are arbitrarily four distinct vertices in Qn5,there exist two fault-free vertex-disjoint paths P1 between a and b and P2 between c and in d such that cover of Qn5.
出处
《太原科技大学学报》
2015年第6期470-474,共5页
Journal of Taiyuan University of Science and Technology
基金
国家自然科学基金(61303020)
山西省青年自然科学基金(2013021018-3)
山西省高等学校优秀青年学术带头人支持计划(20151005)
关键词
互连网络
5元n立方体
不交路覆盖
interconnection network ,5-ary n-cube, disjoint paths cover