期刊文献+

SVDA分类器及其在雷达目标识别中的应用

SVDA Classifier and its Application in Radar Target Recognition
下载PDF
导出
摘要 SVM是解决非线性图形识别问题非常有效的分类方法。本文提出了一种SVDA分类方法,充分利用了SVM的内在优良推广能力。通过寻找有限样本情况下的最优分类面法线方向作为投影轴,对样本数据进行投影,提取样本的特征,进而实现目标识别。本文将SVDA分类方法应用于MSTAR数据集进行SAR雷达目标识别实验,得到了较好的识别效果。 SVM( support vector machine) is an effective classifying method to solve non- linear pattern recognition. A classifying method called SVDA( Support Vector Discriminant Analysis,) is presented,which makes full use of intrinsic perfect generalization ability of SVM. The sample data is projected to extract characteristic of the sample so as to implement target recognition by looking for normal direction of optimal hyperplane in condition of limited condition as projection axis. SVDA classifying method is applied in MSTAR data set to perform SAR radar target recognition test,and the better recognition effect is obtained.
出处 《火控雷达技术》 2015年第4期5-7,19,共4页 Fire Control Radar Technology
关键词 支持向量机 特征提取 分类器 雷达目标 support vector machine feature extraction classifier radar target
  • 相关文献

参考文献6

  • 1Vapnik V N. The Nature of Statistical Learning Theory [ M ]. New York :Springer - Verlag, 1995.
  • 2王珏,周志华,周傲英.机器学习及应用[M].清华大学出版社,2006.
  • 3Bryant M. , Garber F. SVM classifier applied to the MSTAR public data set [ J]. SPIE, 1999, 3721:355 -360.
  • 4吴涛,阮祥伟,谭剑波.支持向量机在SAR图像解译中的研究进展[J].遥感信息,2009,31(5):90-95. 被引量:3
  • 5R 0 Duda, P E Hart, sification [ M]. John tion. 2001.
  • 6D G Stork. Pattern Clas- Wiley & Sons. 2nd Edi- A MMartinez, A C Kak. PCA versus LDA [J]. IEEE TPAMI, 2001, 23(2) :228 -233.

二级参考文献30

  • 1王顺利.基于支持向量机(SVM)的图像去噪方法[J].微电子学与计算机,2005,22(4):96-99. 被引量:9
  • 2程辉,于秋则,田金文,柳健.基于小波支持向量机分割的SAR图像桥梁目标检测[J].华中科技大学学报(自然科学版),2006,34(4):52-55. 被引量:5
  • 3程辉,沈大江,于秋则,田金文,柳健.多尺度SVR的SAR图像复原[J].信号处理,2007,23(3):356-360. 被引量:2
  • 4吴永辉,计科峰,郁文贤.基于支持向量机的极化SAR图像分类[J].现代雷达,2007,29(6):57-60. 被引量:7
  • 5Xiang H.L.,Sun Q.,Jiao L.C..Multiscale image segmentation based on one class SVM and wavelet[J].SPIE,2007(6786):1K1-7.
  • 6Bryant M.,Garber F..SVM classifier applied to the MSTAR public data set[J].SPIE,1999:355-360.
  • 7Zhao Q.,Principe J.C.,Xu D.X..From hyperplanes to large margin classifiers:Applications to SAR ATR[J].SPIE.1999(3718):101-109.
  • 8Zhao Q.,Principe J.C.,Brennan V.L.,et al.Synthetic aperture radar automatic target recognition with three strategies of learning and representation[J].Optics Engineering,2000,30(5):1230-1244.
  • 9Zhao Q.,Pringcipe J..Support vector machines for SAR automatic target recognition[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(2):643-654.
  • 10Xue X R,Zeng Q.M,Zhao R C..A new method of SAR image target recognition based on SVM[A].IGARSS[C].2005.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部