期刊文献+

椭球面镜声波反射聚焦数值模拟研究

Numerical study on the focusing of sound wave using a concave ellipsoidal mirror
下载PDF
导出
摘要 据Hamilton线性理论解,给出沿椭球面镜轴线的电弧放电等离子声源(AD-PSS)反射波计算结果,分析由镜面引起的相位变化对中心波、边缘波及尾波传播影响。在聚焦前区中心波压力为正,边缘波、尾波压力为负;聚焦后区则相反。在线性条件下,反射波压力峰值出现于椭球面镜几何焦点,越过焦点后反射波压力幅值迅速衰减。利用有限元软件COMSOL对椭球面镜声反射过程进行数值模拟,揭示反射波传播演化过程及声场分布规律。据KZK(Khokhlov Zabolotskava Kuznetsov)方程及等效声源法,分析非线性效应对声传播过程影响。研究表明,非线性效应将使椭球面镜实际焦点位置偏离几何焦点,即正压实际焦点出现在几何焦点后,负压实际焦点出现在几何焦点前;随非线性系数增加正压实际焦点后移,负压实际焦点前移。 Based on the Hamilton's theoretical linear solution, the numerical results of the reflection waves of arc- discharge plasma sound source (AD-PSS) along the symmetric axis of an ellipsoidal mirror were presented. The propagation characteristics of the center wave, edge wave and wake wave were analyzed. In the front of the far focus of the mirror, the pressure of center wave is positive and those of the edge wave and wake wave are negative. Beyond the far focus, the situation is reversed. Under linear condition, the peak amplitude of the reflection wave collides with the far focus of mirror. The pressure amplitude of the reflection wave decays very quickly when going beyond the far focus. The reflection process of the sound wave was simulated using the FEM software COMSOL, and the evolution of reflection wave and the distribution of sound field were analyzed. Based on the khokhlov zabolotskava kuznetsov (KZK) equation, the influence of nonlinear coefficient on the propagation of reflection wave was discussed.
出处 《振动与冲击》 EI CSCD 北大核心 2016年第2期201-206,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(11504417)
关键词 等离子体声源 反射声波 椭球面镜 plasma sound source reflection sound wave ellipsoidal mirror
  • 相关文献

参考文献13

  • 1尤特金.液电效应[M].于家珊,译.北京:科学出版社,1962.
  • 2Hamilton M F, Tjotta J N, Tjotta S. Nonlinear effects in the farfield of a directive sound source[J].J. Acoust Soc. Am., 1985, 78(1): 202-216.
  • 3Schaefer R, Zagaeski M,Yoshikawa S. High source level sparker for navy app lications[R]. Phase I SBIR, Final Report for Naval Air Warfare Center, Contract No. N00421-03-P- 1081, 2003.
  • 4黄逸帆. 等离子体声源技术[C]. 2011全国第一届水下安保会议技术学术论文集,2011:198.
  • 5王一博,曾新吾. 水中冲击波源压强的理论估算[C]. 2011全国第一届水下安保会议技术学术论文集, 2011:194.
  • 6张军,曾新吾. 强声波脉冲在水下的自反射聚焦[J]. 声学技术, 2010, 29(6):114-115.
  • 7Oneil H T. Theory of focusing radiators [J]. J.Acoust. Soc. Am., 1949, 21(5): 516-526.
  • 8Lucas B G, Muir T G. The field of a focusing source[J]. J. Acoust. Soc. Am., 1982, 73(4): 1289-1296.
  • 9Hamilton M F. Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror[J]. J. Acoust. Soc. Am., 1993, 93(3): 1256-1269.
  • 10张军,曾新吾,陈聃,张振福.水下强声波脉冲负压的产生和空化气泡运动[J].物理学报,2012,61(18):270-280. 被引量:6

二级参考文献26

  • 1Lu X E Pan Y, Zhang H H 2002 Acta Phys. Sin. 51 1149.
  • 2Wang Y B, Zeng X W, Wang S W 2012 IEEE. Trans. Plasma. Sci. 40 98.
  • 3Wang Y B, Zeng X W, Wang S W 2012 Chin. Phys. B 21 055203.
  • 4Li N, Chen J F, Huang J G 2009 Applied Acoustics 28 241.
  • 5Zhang J, Zeng X W, Zhang Z E Wang Y B 2011 Proceeding of the1st National Conference on Underwater Security and Technology People's Republic of China, April 23-24, 2011 p194.
  • 6Schaefer R, Grapperhaus M 2006 SPIE Conference of Photonics for Port and Harbor Security II Session 2: Diver Detection and Interdiction USA Florida, April 18, 2006.
  • 7Karl W R, Penny K R 2002 Non-Lethal Swimmer Neutralization Study Tech. Report ARL (Austin: The University of Texas).
  • 8Huang Y F 2011 Proceeding of the 1st National Conference onUnderwater Security and Technology People's Republic of China, April 23-24, 2011 p198.
  • 9Ma T, Huang J G, Lei K Z, Chen J F, Zhang Q F 2010 Journal of Marine Science and Application 1 559.
  • 10Li N, Huang J G, Lei K Z, Chen J E Zhang Q F 2011 Journal of Electrostatics 69 291.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部