期刊文献+

基于区间平滑的粒子概率假设密度滤波算法

Particle Probability Hypothesis Density Filtering Algorithm Based on Interval Smoothing
下载PDF
导出
摘要 针对杂波情况下,粒子概率假设密度滤波(P-PHDF)算法存在估计精度低、滤波发散以及粒子退化等问题,提出基于区间平滑的粒子概率假设密度滤波(RTSP-PHDF)算法。该算法利用区间平滑算法(RTS)引入观测值优化重要性密度函数,使粒子分布更逼近多目标概率假设密度的分布,进而得到优化的采样结果,改善滤波性能。仿真结果表明,与P-PHDF算法相比,该算法在有效提高估计精度同时,进一步提高了跟踪系统稳定性。 In the presence of clutters, particle-probability hypothesis density filtering (P-PHDF) algorithm may cause low estimation precision, filter divergence and particle degeneracy, to solve these problems, a Rauch Tung Striebel smoother particle-probability hypothesis density filtering (RTSP-PHDF) algorithm was proposed. This algorithm exploited Rauch Tung Striebel smoother and introduced observation optimization importance density function, making particle distribution closer to multiple targets probability hypothesis density distribution and thus deducing optimized samples with improved filtering performance. The simulation revealed that, in comparison with P-PHDF algorithm, the proposed algorithm had increased estimation precision with further improved stability of tracking system.
出处 《探测与控制学报》 CSCD 北大核心 2015年第6期87-91,共5页 Journal of Detection & Control
基金 CEMEE国家重点实验室开放基金项目资助(2014K0304B) 陕西省自然科学基金项目资助(2015JM6332)
关键词 随机有限集 区间平滑 粒子概率假设密度滤波 random finite set interval smoothing particle-probability hypothesis density filtering
  • 相关文献

参考文献8

  • 1Mahler R. Statistical multisource multitarget information fusion [M]. USA: Artech House, 2007.
  • 2Mahler R. Multi-target Bayes filtering via first-order multi-target moments [J]. Aerospace and Electronic Systems (S0018-9251), 2003, 39(4): 1152-1178.
  • 3Vo B N, Singh S, Doucet A. Sequential Monte Carlo implementation of the PHD filter for multitarget tracking [C] //Proc. Int’l Conf. on Information Fusion. Cairns, Queensland, Australia: Melbourne University, 2003: 792-799.
  • 4ZHAN Ronghui, WAN Jianwei.Iterated unscented Kalman filter for passive target tracking[J]. IEEE Transactions on Aerosp-ace and Electronic Systems,2007,43(3):1155-1163.
  • 5孟凡彬,郝燕玲,张崇猛,周卫东.基于无迹粒子PHD滤波的序贯融合算法[J].系统工程与电子技术,2011,33(1):30-34. 被引量:10
  • 6Rauch H E, Tung F, Striebel C T. Maximum likelihood estimates of linear dynamic systems [J]. Journal of American Institute of Aeronautics and Astronautics,1965,3(8):1445-1450.
  • 7曹蓓. 粒子滤波改进算法及其应用研究[D]. 西安:西安光学精密机械研究所,2013.
  • 8王晓,韩崇昭,连峰.基于随机有限集的目标跟踪方法研究及最新进展[J].工程数学学报,2012,29(4):567-578. 被引量:16

二级参考文献74

  • 1田淑荣,王国宏,何友.多目标跟踪的概率假设密度粒子滤波[J].海军航空工程学院学报,2007,22(4):417-420. 被引量:10
  • 2彭冬亮,文成林,徐晓滨,薛安克.随机集理论及其在信息融合中的应用[J].电子与信息学报,2006,28(11):2199-2204. 被引量:24
  • 3Mahler R. Statistical multisource multitarget information fusion[M]. Boston: Arteeh House Publishers,2007.
  • 4Hall D L, Linas J. Handbook of multisensor data fusion[M]. 2nd ed. New York: CRC Press LLC,2008.
  • 5Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for Bayesian multi-target filtering with random finite sets [J]. IEEE Trans. on Aerospace and Electronic Systems, 2005, ,11 (4) :1224 - 1245.
  • 6Mahler R. Multi-target Bayes filtering via first-order multi- target moments [J]. IEEE Trans. on Aerospace and Electronic Systems, 2003,39(4) : 1152 - 1178.
  • 7Vo B N, Singh S. On the Bayes filtering equations of finite set statistics [C].// Proc. of the 5th Asian Control Conference, 2004:1273 - 1278.
  • 8Gan Q, Harris C J. Comparison of two measurement fusion methods for Kalman-filter based multisensor data fusion [J]. IEEE Trans. on Aerospace and Electronic Systems, 2001,37 (4) :273 - 279.
  • 9Li Y, Leung H, Lo T K, et al. New architectures for centralized multisensor multitarget tracking [J]. Acquisition, track ing and pointing ,2001,8(2) ,520 - 531.
  • 10Hoffman J, Mahler R. Multitargel miss distance via optimal assignment [J]. IEEE Trans. on System, Man, and Cybemetics-Part A ,2004,34(3) :327 - 336.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部