期刊文献+

Ag-Ni合金纳米粒子对苄氯还原的电催化(英文)

Ag-Ni alloy nanoparticles for electrocatalytic reduction of benzyl chloride
下载PDF
导出
摘要 对于有机卤代物的电化学还原,银基纳米催化剂显示出优异的催化活性。采用简单的化学还原法制备Ag-Ni纳米颗粒(NPs),并采用X射线衍射、紫外-可见光谱、透射电镜以及能量散射谱等方法对制备的纳米催化剂进行表征。采用循环伏安法、计时电流法以及电化学阻抗谱在有机介质中研究Ag-Ni纳米颗粒对苄氯还原的电催化活性。结果表明:Ni元素的加入可明显减小Ag-Ni纳米颗粒的尺寸,使苄氯的还原峰电位φp正移且增加Ag-Ni纳米颗粒的催化活性。然而,当Ni的含量大于一定值后,Ag-Ni纳米颗粒的催化活性反而降低。同时,对Ag-Ni纳米颗粒的协同催化效应进行探讨。 Ag-based nanocatalysts exhibit good catalytic activity for the electrochemical reduction of organic halides. Ag-Ni alloy nanoparticles(NPs) were facilely prepared by chemical reduction, and the as-prepared nanocatalysts were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The electrocatalytic activity of Ag-Ni NPs for benzyl chloride reduction was studied in organic medium using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results show that the addition of Ni element can obviously decrease the size of Ag-Ni NPs, shift the reduction peak potential(φp) of benzyl chloride positively, and increase the catalytic activity of Ag-Ni NPs. However, when the Ni content reaches a certain value, the catalytic activity of Ag-Ni NPs decreases. Meanwhile, the synergistic catalytic effect of Ag-Ni NPs was also discussed.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4001-4007,共7页 中国有色金属学报(英文版)
基金 Projects(21271069 51238002 J1210040 J1103312)supported by the National Natural Science Foundation of China Project(2013GK3015)supported by the Science and Technology Project of Hunan Province China
关键词 Ag-Ni合金纳米颗粒 苄氯 协同催化效应 电化学还原 Ag-Ni nanoparticles benzyl chloride synergistic catalytic effect electroreduction
  • 相关文献

参考文献21

  • 1ALONSO F, BELETSKAYA I P, YUS M. Metal-mediated reductive hydrodehalogenation of organic halides[J]. Chem Rev, 2002, 102( 11 ): 4009-4092.
  • 2JANIAK T, OKAL J. Effectiveness and stability of commercial Pd/C catalysts in the hydrodechlorination of meta-substituted chlorobenzenes[J]. Applied Catalysis B: Environmental, 2009, 92(3-4): 384-392.
  • 3QUAN Xiang-chun, SHI Han-chang, ZHANG Yong-ming, WANG Jian-long, QIAN Vi. Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp[J]. Separation and Purification Technology, 2004, 34(1-3): 97-103.
  • 4YANG Bo, YU Gang, SHUAI Dan-meng. Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode[J]. Chemosphere, 2007, 67(7): 1361-1367.
  • 5SUN Zhi-rong, GE Hui, HU Xiang, PENG Yong-zhen. Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solution[J]. Separation and Purification Technology, 2010,72(2): 133-139.
  • 6ISSE A A, BERZI G, FALCIOLA L, ROSSI M, MUSSINI P R, GENNARO A. Electrocatalysis and electron transfer mechanisms in the reduction of organic halides at Ag[J]. Journal of Applied Electrochemistry, 2009, 39: 2217-2225.
  • 7AN C, KUANG Y, FU C, ZENG F, WANG W, ZHOU H. Study on Ag-Pd bimetallic nanoparticles for electrocatalytic reduction of benzyl chloride[J]. Electrochemistry Communications, 2011, 13(12): 1413-1416.
  • 8POIZOT P, SIMONET J. Silver-palladium cathode: Selective one-electron scission of alkyl halides: Homo-coupling and cross-coupling subsequent reactions[J]. Electrochimica Acta, 2010, 56(1): 15-36.
  • 9SHAN D, ZHOU H, ZHANG C, XIE C, CHEN Z, YE T, KUANG Y. Synthesis of Ag-Ru nanostructures for electroreduction of benzyl chloride[J]. ECS Electrochemistry Letters, 2014, 3(8): H20-H23.
  • 10ZHANG G, KUANG Y, LIU J, CUI Y, CHEN J, ZHOU H., Fabrication of Ag/Au bimetallic nanoparticles by UPD-redox replacement: Application in the electrochemical reduction of benzyl chloride[J]. Electrochemistry Communications, 2010, 12(9): 1233-1236.

二级参考文献26

  • 1Yamada K., Asazawa K., Yasuda K., Ioroib T., Tanaka H., Miyazaki Y., and Kobayashi T., Investigation of PEM type direct hydrazine fuel cell, J. Power Sources, 2003, 115: 236.
  • 2Razmi-Nerbin H. and Poumaghi-Azar M.H., Nickel pentacyanonitrosylferrate film modified aluminum electrode for electrocatalytic oxidation of hydrazine, J. Solid State Electrochem, 2002, 6: 126.
  • 3Rosca V. and Koper M.T.M., Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions, Electrochim, Acta. 2008.53:5199.
  • 4Li N., Tianyan Y., Gui J.Y., Erkang W., and Shaojun D., Electrocatalytic oxidation of hydrazines at a 4-pyridyl hydroquinone self-assembled platinum electrode and its application to amperometric detection in capillary electrophoresis, J. ElectroanaL Chem., 1998, 448: 79.
  • 5Garcfa Azorero M.D., Marcos M.L., and Gonzalez Velasco J., Influence of changes in the total surface area and in the crystalline surface composition of Pt electrodes on their electrocatalytic properties with respect to the electro-oxidation of hydrazine, Electrochim. Acta, 1994, 39: 1909.
  • 6Gomez R., Orts J.M., Rodes A., Feliu J.M., and Aldaz A., The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes: Part 1. Hydrazine behaviour on platinum basal planes in sulphuric acid solutions, J. Electroanal Chem., 1993, 358: 287.
  • 7Kodera T. and Honda Kita M.H., Electrochemical behaviour of hydrazine on platinum in alkaline solution, Electrochira. Acta, 1985, 30: 669.
  • 8Kokkinidis G. and Jannakoudakis P.D., Influence of the electrosorption of heavy metals on hydrazine oxidation on platinum, J. Electroanal. Chem., 1981, 130: 153.
  • 9Perek M. and Bruckenstein S., An isotopic labeling investigation of the mechanism of the electrooxidation of hydrazine at platinum: An electrochemical mass spectrometric study, J. Electroanal. Chem., 1973, 47: 329.
  • 10Harrison J.A. and Khan Z.A., The oxidation of hydrazine on platinum in acid solution, J. Electroanal. Chem., 1970, 28: 131.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部