期刊文献+

In vitro biodegradability and biocompatibility of porous Mg-Zn scaffolds coated with nano hydroxyapatite via pulse electrodeposition 被引量:2

脉冲电沉积涂覆纳米羟基磷灰石的多孔Mg-Zn支架材料的体外生物降解能力和生物相容性(英文)
下载PDF
导出
摘要 The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse electrodeposition method. The as-deposited scaffolds were then post-treated with alkaline solution to improve the biodegradation behavior and biocompatibility for implant applications. The microstructure and composition of scaffold and nano HAP coating, as well as their degradation and cytotoxicity behavior in simulated body fluid(SBF) were investigated. The post-treated coating is composed of needle-like HAP with the diameter less than 100 nm developed almost perpendicularly to the substrate, which exhibits a similar composition to natural bone. It is found that the products of immersion in SBF are identified to be HAP,(Ca,Mg)3(PO4)2 and Mg(OH)2. The bioactivity, biocompatibility and cell viabilities for the as-coated and post-treated scaffold extracts are higher than those for the uncoated scaffold. MG63 cells are found to adhere and proliferate on the surface of the as-coated and post-treated scaffolds, making it a promising choice for medical application. The results show that the pulse electrodeposition of nano HAP coating and alkaline treatment is a useful approach to improve the biodegradability and bioactivity of porous Mg-Zn scaffolds. 研究纳米羟基磷灰石(HAP)涂覆的多孔Mg-2Zn(质量分数,%)支架材料的生物降解能力和生物相容性。采用脉冲电沉积制备羟基磷灰石涂层。对涂覆HAP的支架在碱性溶液中进行后处理来改善其生物降解性和生物相容性。研究支架和HAP涂层的显微组织和成分以及它们在模拟体液(SBF)中的降解和细胞毒性。经过碱溶液处理后的涂层由几乎垂直于基体的直径小于100 nm的针状HAP组成,具有和天然骨头相似的成分,浸泡在SBF中后,产物为HAP、(Ca,Mg)3(PO4)2和Mg(OH)2。涂覆HAP和经过处理碱处理后的支架比未涂覆HAP的支架具有更高的生物相容性和细胞存活性。MG63细胞粘附在涂覆HAP和经过碱处理后的支架的表面并增殖,使这些支架有望应用于医学。结果表明:纳米HAP的脉冲电沉积和碱处理可有效改善多孔Mg-Zn支架的生物降解能力和生物相容性。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4018-4027,共10页 中国有色金属学报(英文版)
关键词 porous Mg-Zn scaffold hydroxyapatite coating pulse electrodeposition BIODEGRADABILITY BIOCOMPATIBILITY 多孔Mg-Zn支架 羟基磷灰石涂层 脉冲电沉积 生物降解能力 生物相容性
  • 相关文献

参考文献27

  • 1TAN L, GONG M, ZHENG F, ZHANG B, YANG K E. Study on compression behavior of porous magnesium used as bone tissue engineering scaffold[J]. Biomedical Materials, 2009, 4: 1-7.
  • 2ZHUANG H, HAN Y, FENG A. Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds[J]. Materials Science and Engineering C, 2008, 28: 1462-1466.
  • 3WEN C E, MABUCHI M, YAMADA Y, SHIMOJIMA K, CHIHO Y, ASAHINA T. Processing of biocompatible porous Ti and Mg[J]. Scripta Materialia, 2001, 45: 1147-1153.
  • 4KHANRA A K, JUNG H C, YU S H, HONG K S, SHIN K S. Microstructure and mechanical properties of Mg-HAP composites[J]. Materials Science, 2010, 33: 43-47.
  • 5KIRKLAND N T, BIRBILIS N, STAIGER M P. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations[J]. Acta Biomaterialia, 2012,8: 925-936.
  • 6LI Z, GU X, LOU S, ZHENG Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29: 1329-1344.
  • 7MULLER W D, NASCIMENTO M L, ZEDDIES M, CORSICO M. Magnesium and its alloys as degradable biomaterials: Corrosion studies using potentiodynamic and EIS electrochemical techniques[J]. Materials Research, 2007,10: 5-10.
  • 8WEN C E, YAMADA Y, SHIMOJIMA K, CHINO Y, HOSOKAWA H, MABUCHI M. Compressibility of porous magnesium foam: Dependency on porosity and pore size[J]. Materials Letter, 2004, 58: 357-360.
  • 9XIN Y, HUO K, TAO H, TANG G, CHU P K. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment[J]. Acta Biomaterialia, 2008, 4: 2008-2015.
  • 10XIN Y, HU T, CHU P K. Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HC03 -[J]. Corrosion Science, 2011, 53: 1522-1528.

二级参考文献11

共引文献20

同被引文献44

  • 1STAIGER M P, PIETAK A M, HUADMAI J, DIAS G. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27(9): 1728-1734.
  • 2WITTE F, FISCHER J, NELLESEN J, CROSTACK H A, KAESE V, PISCH A, BECKMANN F, WINDHAGEN H. In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials, 2006, 27(7): 1013-1018.
  • 3WITTE F, KAESE V, HAFERKAMP H, SWITZER E, MEYER-LINDENBERG A, WIRTH C, WINDHAGEN H. In vivo corrosion of four magnesium alloys and the associated bone response [J]. Biomaterials, 2005, 26(17): 3557-3563.
  • 4WITTE F, FISCHER J, NELLESEN J, VOGT C, VOGT J, DONATH T, BECKMANN F. In vivo corrosion and corrosion protection of magnesium alloy LAE442 [J]. Acta Biomaterialia, 2010, 6(5): 1792-1799.
  • 5EL-RAHMAN S S A. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment) [J]. Pharmacological Research, 2003, 47(3): 189-194.
  • 6NAKAMURA Y, TSUMURA Y, TONOGAI Y, SHIBATA T, ITO Y. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats [J]. Toxicological Sciences, 1997, 37(2): 106-116.
  • 7GU X, ZHENG Y, CHENG Y, ZHONG S, XI T. In vitro corrosion and biocompatibility of binary magnesium alloys [J]. Biomaterials, 2009, 30(4): 484-498.
  • 8ILICH J Z, KERSTETTER J E. Nutrition in bone health revisited: A story beyond calcium [J]. Journal of the American College of Nutrition, 2000, 19(6): 715-737.
  • 9LI Z, GU X, LOU S, ZHENG Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone [J]. Biomaterials, 2008, 29(10): 1329-1344.
  • 10RAD H R B, IDRIS M H, KADIR M R A, FARAHANY S. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys [J]. Materials and Design, 2012, 33: 88-97.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部