摘要
目的:探讨肿瘤标记物与肺癌病理类型之间的关系,通过建立肿瘤标记物血清学水平预估早期肺癌病理类型的数学模型,辅助临床制定早期治疗策略。方法通过测定34例鳞癌、43例腺癌和22例小细胞癌患者治疗前4种肿瘤标记物(NSE 、CEA 、CA‐125及 Cyfra21‐1)在血清中的水平,分析它们与肺癌病理类型之间的关系,最后采用逐步判别分析法,淘汰对预估病理类型价值小的指标,建立相应的判别函数式。结果筛选出 NSE 、CEA和 Cyfra21‐1三项肿瘤标记物建立函数 Y1=5.061‐0.146(NSE)+0.014(CEA) +0.173(Cyfra)以判断小细胞肺癌和非小细胞肺癌,其总符合率为92.9%,筛选出 Cyfra21‐1一项肿瘤标记物建立函数 Y2=-0.486 +0.086(Cyfra)以判断鳞癌和腺癌,其总符合率为64.9%。以上判别函数的建立可以有效辅助临床制定早期治疗策略。结论肺癌是我国癌症致死的首要原因,提高肺癌治疗效果和预后的关键在于早期诊断并及时治疗。肿瘤标志物的异常改变往往早于影像学征象及临床表现,分析肿瘤标志物与肺癌病理类型的关系,对辅助临床早期治疗策略的选择十分重要。
Objective To investigate the relationship between tumor markers and pathological type of lung cancer ,by establishing mathematical model between serological tumor markers levels and pathological type of lung cancer and auxiliary clinical to formulate strategy of early treatment .Methods Serum NSE ,CEA ,CA‐125 and Cy‐fra21‐1 levels of 34 squamous carcinoma (SC) ,43 adencarcinoma (AC) and 22 small cell lung cancer (SCLC) patients were determined .The relationship between TMs and pathological type of LC was compared by one‐way analysis of variance (ANOVA) .Then TMs with low value for prediction were rejected through stepwise discriminate analysis . Results Discriminate function for SCLC and non‐small cell lung cancer (NSCLC) with NSE ,CEA and Cyfra21‐1 was established {Y1 = 5 .061‐0 .146(NSE)+ 0 .014(CEA)+ 0 .173(Cyfra)} ,and the total coincidence rate is 92 .9% . Discriminate function for SC and AC with Cyfra21‐1 only was established {Y2 = ‐0 .486 + 0 .086(Cyfra)} ,and the to‐tal coincidence rate is 64 .9% .The two discriminate functions were practical for developing early treatment strategies . Conclusion Lung cancer (LC) is the major cause for cancer death in China .The key point of improving therapeutic efficacy and prognosis for cancer is early diagnosis and timely treatment .Abnormal changes of tumor markers (TMs) often occur earlier than imageology signs .Therefore ,it is essential to analyze the relationship between TMs and path‐ological type of LC for developing early treatment strategies .
出处
《检验医学与临床》
CAS
2015年第A02期110-113,共4页
Laboratory Medicine and Clinic
关键词
肺癌
肿瘤标记物
病理诊断
判别分析
LC
TM
pathological diagnosis
stepwise discriminate analysis