期刊文献+

脉冲输注IL-2与免疫效应细胞的肿瘤免疫治疗动力学分析 被引量:2

Dynamics Analysis on Tumor Growth Model with Periodic Impulsive Injection of IL-2 and Immune Effector Cells
下载PDF
导出
摘要 本文研究一类具脉冲输注方式的肿瘤免疫治疗三维脉冲微分方程模型.运用频闪映射、Floquet乘子理论及脉冲比较定理等分析方法,研究模型周期解的存在性和渐近稳定性,从而获得肿瘤灭绝的条件.通过数值模拟验证了所获理论结果的正确性. A periodic pulse differential equation model of tumor immunotherapy is estab- lished by considering the periodic and transient behavior of infusing immune cells. Using the comparison theorem and Floquet multiplier theory of the impulsive differential equa- tion, the existence and asymptotic stability of the free-tumor periodic solution are given. Numerical simulations are carried to confirm the main theorems.
出处 《南华大学学报(自然科学版)》 2015年第4期72-76,共5页 Journal of University of South China:Science and Technology
基金 湖南省自然科学基金资助项目(14JJ2089) 湖南省自然科学基金资助项目(13JJ9008) 湖南省教育厅科学研究重点基金资助项目(14A128) 湖南省研究生科研创新基金资助项目(2014SCX22)
关键词 肿瘤免疫疗法 周期脉冲 稳定性 tumor immunotherapy periodic pulse stability
  • 相关文献

参考文献5

二级参考文献100

  • 1QIAO mei-hong,QI huan(Department of Control Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074).Dynamics of the HBV model with diffusion and time delay[J].医用生物力学,2009,24(S1):117-118. 被引量:2
  • 2胡日查,阮晓钢.基于细胞自动机的实体肿瘤生长动态建模[J].生物数学学报,2006,21(1):129-136. 被引量:2
  • 3马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 4周广炎.免疫学原理[M].上海:科学技术文献出版社,2000.
  • 5Rosenberger S A, Lotze M T. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lym-phocytes [J]. Annual Review of Immunology, 1986, 4:681-709.
  • 6Kirschner D, Panetta J C. Modeling immunotherapy of the tumor-immune interaction [J]. J. Math. Biol、1998,37(3):235-252.
  • 7Perelson A, Nelson P W. Mathematical analysis of HIV-1 dynamics in vivo [ J ]. Society for Industrial and Applied Mathematics, 1999,41 ( 1 ) :3-44.
  • 8Wang K, Wang W, Liu X. Viral infection model with peri- odic lytic immune response [ J ]. Chaos, Solitons & Frac- tals,2006,28 ( 1 ) :90-99.
  • 9Zhu Huiyan,Luo Yang, Chen Meiling. Stability and Hopf bifurcation of HIV infection model with CTL-response delay [ J ]. Computers and Mathematics with Applica- tions, 2011,62 (9) : 3091-3102.
  • 10Smith R J,Wahl L M. Drug resistance in an immunologi- cal model of HIV-1 infection with impulsive drug effects [ J ]. Bulletin of Mathematical Biology, 2005,67 ( 4 ) : 783-813.

共引文献17

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部