摘要
将分布随从力、winker地基等效刚度k作为输流管道运动微分方程新增参数纳入考虑,新的振动微分方程由此产生,离散并且求解采用Galerkin法。频率特征值源于频率扫描(frequency scanning)及传递弯矩法。具体分析了在考虑分布随从力(跟随力),裂纹存于管跨上不同位置、不同大小弹性地基刚度支承管道时,其失稳形式的变化。研究显示弹性地基存在对保持含裂纹管道的稳定性起部分作用,需重视裂纹开口深度及裂纹所处管跨位置对管道稳定性的影响。
The differential equation of fluid-conveying pipes considering distributed follower force and elastic foundation is established. The equation is discreted and solved by Galer- kin method and the frequency characteristic values are solved by bending moment transfer method. The effects of crack location and elastic foundation stiffness to the form of instabili- ty of the pipes under the distributed follower force are analyzed. Results show that the elas- tic foundation stiffness can enforce the stability of the pipes effectively, and the effects are more obvious when the crack location is closer to the middle of the pipe.
出处
《南华大学学报(自然科学版)》
2015年第4期104-108,共5页
Journal of University of South China:Science and Technology
关键词
分布随从力
裂纹
弹性地基
输流管道
distributed follower force
crack
elastic foundation
pipe conveying fluid