期刊文献+

基于Wirtinger的区间时滞系统的稳定性分析 被引量:1

Stability Analysis for Systems with Interval Time-Varying Delay Based on Wirtinger-Based Integral Inequality
下载PDF
导出
摘要 为了解决区间时变时滞系统的稳定性问题,本研究通过使用合适的L-K泛函,推导方式上采用Wirtinger积分不等式和改进的Jensen型不等式相结合的方法,得到了基于线性矩阵不等式LMI的区间时变时滞系统稳定性的新判据,并使用Matlab求解,同时给出数值例子进行验证。验证结果表明,当d=0.3和d未知时,本文结果与文献[11]和[15]相比具有更小的保守性;当d=0.1时,与文献[14]相比保守性较大,但当时滞导数d=0.3,d=0.5,d=0.8时,与文献[14]相比,本文方法能获得更好的时滞上界。说明本文结果在时滞导数项比较大时与当前一些方法相比具有较好的优越性。 In order to solve the problem of the stability of time varying delay systems, this paper provides a combined method of Wirtinger-based integral inequality and improved Jensen type inequality, by using a suitable L-K Functional. A new criterion for stability of time varying delay systems is obtained in terms of LMIs. Numerical examples are given to verify the results by using matlab. When d = 0.3 and d is unknown,the results of this paper is less conservative than those in [11] and [15]. When d=0.1, compared with the literature [14], our resultis relatively conservative. But when d=0.3, d=0.5,d=0.8, compared with the literature [14], the proposed method can obtain better upper bounds of the time-delay. It is showed that the results of this paper have good advantages in comparison with the current methods when the bound of time delay derivative term is relatively large.
出处 《青岛大学学报(工程技术版)》 CAS 2015年第4期9-15,共7页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家自然科学基金资助项目(61174033) 山东省自然科学基金资助项目(ZR2011FM006)
关键词 时滞系统 Wirtinger型积分不等式 线性矩阵不等式(LMI) 稳定性分析 time-delay systems Wirtinger-based inequality LMI stability analysis
  • 相关文献

参考文献19

  • 1Gu K, Kharitonov V, Chen J. Stability of Time-Delay Systerms [M]. Basel: Birkhauser, 2003.
  • 2Lin Chong, Wang Qingguo, Lee T H. A Less Conservative Robust Stability Test for Linear Uncertain Time Delay Sys tems[J]. IEEE Transactions on Automatic Control, 2006, 51(1): 87- 91.
  • 3Yan Huaicheng, Zhang Hao, Meng M Q H. Delay-Range-Dependent RobustH∞ Control for Uncertain Systems with In terval Time-Varying Delays[J].Neurocomputing, 2010, 73(7): 1235 -1243.
  • 4Liu Fang, Wu Min, He Yong, et al. New Delay-Dependent Stability Criteria for T-S Fuzzy Systems with Time-Varying Delay [J]. Fuzzy Sets and Systems, 2010, 161(15): 2033-2042.
  • 5Lakshmanan S, Senthilkumar T, Balasubramaniam P. Improved Results on Robust Stability of Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations [J]. Applied Mathematical Modeling, 2011, 35(11): 5355- 5368.
  • 6Liu Yun, Hu Lisheng, Shi Peng. A Novel Approach on Stabilization for Linear Systems with Time-Varying Input Delay [J]. Applied Mathematics and Computation, 2012, 218(10) : 5937 - 5947.
  • 7Sun Jian, Liu Guoping, Chen Jie, et al. Improved Delay-Range-Dependent Stability Criteria for Linear Systems with mixed Time Delays [J]. Automatica, 2010, 46(2): 466-470.
  • 8Tian Junkang, Zhong Shouming. Improved Delay-Dependent Stability Criterion for Neural Networks with Time Varying Delay [J]. Applied Mathematics and Computation, 2011, 217(24) : 10278 - 10288.
  • 9Wu Zhengguang, Shi Peng, Su Hongye, et al. Passivity Analysis for Discrete-Time Stochastic Markovian Jump Neural Networks with Mixed Time Delays [J]. IEEE Transactions on Neural Networks, 2011, 22(10) : 1566 - 1575.
  • 10Shen Hao, Xu Shengyuan, Lu Junwei, et al. Passivity-Based Control for Uncertain Stochastic Jumping Systems with Mode-Dependent Round Trip Time Delays [J].Journal of the Franklin Institute, 2012, 349 (5) : 1665 - 1680.

二级参考文献27

  • 1Jiang X F, Han Q L. On H∞ control for linear systems with interval time-varying delay[J]. Automatica, 2005, 41(12): 2099-2106.
  • 2Jiang X F, Han Q L. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay[J]. Automatica, 2006, 42(6): 1059-1065.
  • 3He Y, Wang Q G, Lin C, et al. Delay-rangedependent stability for systems with time-varying delay[J]. Automatica, 2007, 43(2): 371-376.
  • 4Jiang X F, Han Q L. New stability criteria for linear systems with interval time-varying delay[J]. Automatica, 2008, 44(10): 2680-2685.
  • 5Chen P, Tian Y C. Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J].J of Computational and Applied Mathematics, 2008, 214(2): 480-494.
  • 6Shao H Y. Improved delay-dependent stability criteria for systems with a delay varying in a range[J]. Automatica, 2008, 44(12): 3215-3218.
  • 7Shao H Y. New delay-dependent stability criteria for systems with interval delay[J]. Automatica, 2009, 45(3): 744-749.
  • 8Yue D, Han Q L, Peng C. State feedback controller design of networked control systems[J]. IEEE Trans on Circuits and Systems-II: Express Briefs, 2004, 51(11): 640-644.
  • 9He Y, Wu M, She J H, et al. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J]. Systems and Control Letters, 2004, 51(1): 57- 65.
  • 10Gu K. An integral inequality in the stability problem of time-delay systems[C]. Proc of the 39 th IEEE Conf on Decision Control. Sydney, 2000: 2805-2810.

共引文献20

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部