期刊文献+

广义Delta算子系统的非脆弱容许控制 被引量:4

Non-Fragile Admissible Control for Singular Delta Operator Systems
下载PDF
导出
摘要 针对广义Delta算子系统的非脆弱控制问题,利用广义Delta算子系统容许的充要条件,给出系统广义二次容许的定义,以保证系统存在不确定时仍然容许,并采用线性矩阵不等式的方法,给出了广义Delta算子系统非脆弱状态反馈容许控制器存在的充分必要条件,同时利用线性矩阵不等式所得到的解,给出控制器的设计方法,使闭环系统广义二次容许,通过数值算例,对文中的理论结果进行仿真验证。仿真结果表明,当F=1,x1(0)=5以及F=-1,x1(0)=5的两种情况下,本文所设计的非脆弱控制器是可行有效的。因此,证明Delta算子方法在广义离散系统的非脆弱研究方面有很好的应用。 Regarding the problem of non-fragile control for singular delta operator systems, the the definition of generalized quadratical admissibility is given for uncertain singular delta operator systems based on a necessary and sufficient admissibility condition,and by means of linear matrix inequality(LMI), a neces- sary and sufficient condition is given for the existence of a suitable non-fragile admissible controller. In the meantime, the design method of the controller is also presented in terms of the solution to the linear matrix inequality, which can ensure the corresponding closed-loop system generalized quadratically admissible. A numerical example is provided to demonstrate the effectiveness of the result in this paper. Simulation re sults show that when F=I ,:cl (0)=5 and F=-1 ,x1 (0)=5 ,the non-fragile controller designed in this paper is feasible and valid. Therefore,it proves the delta operator method has a good application in the research of non-fragile admissible control for singular discrete system.
出处 《青岛大学学报(工程技术版)》 CAS 2015年第4期47-52,共6页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家自然科学基金资助项目(61104001)
关键词 广义Delta算子系统 非脆弱容许控制 状态反馈 线性矩阵不等式 singular delta operator system non-fragile admissible control state feedback linear matrix in equality (LMI)
  • 相关文献

参考文献12

  • 1段广仁.广义线性系统分析与设计[M].北京:科学出版社,2012,238-254.
  • 2Xu Shengyuan, James L. Robust Control and Filtering of Singular Systems[M]. Berlin: Springer Berlin Heidelberg, 2006.
  • 3Dong Xin-zhuang. LMI Based H∞ Control for Linear Singular Discrete Systems: A Novel Method [J]. let Control Theo- ry & Applications, 2013, 7(16): 2028-2036.
  • 4Keel L H, Bhattacharyya S P. Robust, Fragile, or Optimal[J]. IEEE Transactions on Automatic Control, 1997, 42(8) : 1098- 1105.
  • 5舒伟仁,张庆灵.不确定时滞广义系统的鲁棒非脆弱H_∞控制[J].控制与决策,2005,20(6):629-633. 被引量:19
  • 6韩晓新,沃松林.广义系统的非脆弱观测器设计与镇定控制[J].南京理工大学学报,2012,36(4):606-611. 被引量:4
  • 7Goodwin G C, Leel R I., Mayne D Q. Rapprochement Between Continuous and Discrete Model Reference Control [J]. Automatica, 1986, 22(2): 199 - 207.
  • 8Dong Xin-zhuang. Admissibility Analysis of Linear Singular Systems Via a Delta Operator Method [J]. International Journal of Systems Science, 2014, 45(11) : 2366- 2375.
  • 9Dong Xin-zhuang, Xiao Mingqing. Admissible Control of Linear Singular Delta Operator Systems [J].Circuits Systems and Signal Processing, 2014, 33(7) : 2043 - 2064.
  • 10毛青堂,董心壮,田万虎.广义Delta算子系统的状态反馈容许控制[J].青岛大学学报(工程技术版),2013,28(1):14-18. 被引量:9

二级参考文献47

  • 1段广仁,吴爱国.广义线性系统的干扰解耦观测器设计[J].控制理论与应用,2005,22(1):123-126. 被引量:11
  • 2栾家辉,姜兴渭,宋政吉.干扰解耦降维观测器设计的新方法[J].南京理工大学学报,2006,30(3):306-310. 被引量:3
  • 3徐大波,张庆灵,胡跃冰.不确定广义系统的降阶H_∞控制器设计[J].自动化学报,2007,33(1):44-47. 被引量:6
  • 4刘永清 谢湘生..大型动力系统的理论与应用-卷8,滞后厂义系纺的稳定与控制[M].广州:华南理工大学出版社,1998..
  • 5Xu S Y , Dooren P V, Stefan R, et al. Robust stability and stabilization for singular systems with state delay and parameter uncertainty [J], 1EEE Trans on Automatic Control,2002,47(7) :1122-1128.
  • 6Keel L H, Bhattacharyya S P. Robust, fragile, or optimal ? [J]. IEEE Trans on Automatic Control, 1997,42(8) :1098-1105.
  • 7Yang G H, Wang J L, Lin C. H∞ control for linear systems with additive controller gain variation[J], lnt J Control,2000,73(16) : 1500-1506.
  • 8Fanularo D, Dorato P, Abdallah C T, et al. Robust non-fragile LQ controllers: The static state feedback case[J]. Int J Control, 2000,73(2) : 159-165.
  • 9Dai L. Singular control systems[M]. Berlin: Springer-Vertag, 1989.
  • 10Khargonekar P P, Petersen I R, Zhou K. Robust stabilization of uncertain systems and H∞ optimal control[J]. IEEE Trans on Automatic Control, 1990,35(3) : 351-361.

共引文献32

同被引文献33

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部