期刊文献+

基于特征点稀疏光流场的视频图像背景建模方法 被引量:1

An Background Modeling Method Based on Feature Point Sparse Optical Flow Field of the Video Image
下载PDF
导出
摘要 针对利用高斯模型法进行背景建模所导致的背景图像出现目标阴影问题,本文提出了一种基于特征点稀疏光流场的视频图像背景建模方法。先利用角点检测找出目标特征点,然后利用光流场估计画出特征点光流并用矩形框框出,使大致的前景像素点包含在矩形框里,同时对处于矩形框外面各像素点的每帧图像进行背景建模,并采用Matlab编程软件对系统算法进行验证。验证结果表明,利用改进的混合高斯背景建模,可以去除背景灰度图像的阴影,使背景建模准确有效,并以此获得更精确的目标区域,而且该模型对基于背景减除法的目标检测算法更加有效,因此具有一定的实际应用价值。 For the use of gaussian model method for background modeling, as a result of the background image target shadow problems, this paper proposed a video images based on feature point sparse optical flow field in the background modeling method. Firstly, we use corner detection to find target feature points, and then draw the feature points which are estimated based on the optical flow field optical flow with rectangular box out. This makes the prospect of the general pixel be included in the rectangular box, at the same time, having image background modeling with each pixel of every frame outside the rectangular box, and we use Matlab software to verify this system algorithm. Verification results show that the improved gaussian mixture background model, can remove the background of the shadow of the gray image, make the background modeling more accurate and more effective, and obtain more accurate target area. The model of target detection algorithm based on background subtraction division is more effective, thus has certain actual application value.
出处 《青岛大学学报(工程技术版)》 CAS 2015年第4期53-57,共5页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家自然科学基金资助项目(61202208)
关键词 光流法 角点检测 高斯模型 背景建模 optical flow feature point sparse the gaussian model background subtraction
  • 相关文献

参考文献3

二级参考文献15

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2Doretto G,Chiuso A,Wu Y N,et al.Dynamic Textures[J].Interna- tional Journal of Computer Vision,2003,51 (2):91-109.
  • 3Berthold K P Horn, Brian G Schunch.Determining optical flow [J].Artificial Intelligence, 1981,17:185-203.
  • 4Yu Ting,Zhang Cha,Michael Cohen,et al.Monocular video fore- ground/background segmentation by tracking spatial-color Gau- ssian mixture models[C].Washington:Proc IEEE Workshop on Motion and Video Computing,2007.
  • 5Stauffer C, Grimson WEL. Learning patterns of activity using real-time tracking [C]. Washington: Proc IEEE Trans on PAMI, 2000:747-757.
  • 6Chris Poppe,Gaetan Martens,Peter Lambert, et al.Mixture mo- dels based background subtraction for video surveillance applica- tions [C]. Vienna, Austria: Proceedings of the 12th International Conference on Computer Analysis of Images and Patterns,2007: 28-35.
  • 7Nariman Majdi-Nasab,Mostafa Analoui.Decomposing parame- ters of mixture Gaussian model using genetic and maximum likelihood algorithms on dental images[J].Pattern Recognition Letters,2006,27(13 ): 1522-1536.
  • 8姚会,苏松志,王丽,李绍滋.基于改进的混合高斯模型的运动目标检测方法[J].厦门大学学报(自然科学版),2008,47(4):505-510. 被引量:22
  • 9王宏群,孙洪伟.基于背景建模的运动目标检测[J].电脑知识与技术,2008(8):825-827. 被引量:6
  • 10屠大维,江济良.改进的光流运动图像分析方法及其应用[J].光学精密工程,2011,19(5):1159-1164. 被引量:15

共引文献30

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部