期刊文献+

基于L0范数视觉显著性的织物疵点检测算法研究 被引量:2

A Novel Fabric Defect Detection Algorithm Using L0 Norm Visual Saliency
下载PDF
导出
摘要 提出了一种基于L0范数视觉显著性的织物疵点检测算法。首先将测试图像分块,针对每一个测试图像块,用随机选择的K个其他图像块与该图像块变异构建字典库,并利用该字典库对测试图像块进行稀疏表示。然后采用L0范数优化方法来求解稀疏系数,将变异图像块对应的稀疏系数作为该图像块的显著度,从而生成最终视觉显著度图。最后通过迭代最优阈值分割算法定位出疵点区域。该算法相对已有方法能更有效地检测出疵点区域。 This paper proposes a novel fabric defect detection algorithm using sparse representation-based visual saliency. In the proposed scheme, an input image is first divided into blocks, then each image block is represented based on a dictionary constructed using some randomly selected blocks and the dithered test block, using L0-rninimization solves the equation to obtain weights. Based on the corresponding weight value of dithered test block, a saliency map is produced. Finally, saliency map is segmented by using an optimal threshold, which is obtained by an iterative approach. Experimental results demonstrate that generated saliency map using our proposed method outperforms state-of-the art, and the defect can be efficiently localized by the optimum threshold segmentation.
机构地区 中原工学院
出处 《中原工学院学报》 CAS 2015年第6期1-5,44,共6页 Journal of Zhongyuan University of Technology
基金 国家自然科学基金项目(61202499 61379113) 河南省基础与前沿技术研究项目(142300410042) 郑州市科技领军人才项目(131PLJRC643)
关键词 L0范数 视觉显著性 稀疏表示 织物图像 疵点检测 L0 norm visual saliency sparse representation fabric image defect detection
  • 相关文献

参考文献17

  • 1Tajeripour F, Kabir E, Sheikhi A. Fabric Defect Detection Using Modified Local Binary Patterns[J]. Eurasip Journal on Advances in Signal Processing, 2008(1):1-12.
  • 2Shi M, Fu R, Guo Y, et al. Fabric Defect Detection U- sing Local Contrast Deviations[J]. Multimedia Tools 8^th Applications, 2011, 52(1):147-157.
  • 3Ngan H Y T, Pang G K H, Yung N H C. Performance Evaluation for Motif-based Patterned Texture Defect De- tection[J]. IEEE Transactions on Automation Science Engineering, 2010, 7(1) :58-72.
  • 4Srikaew A, Attakitmongcol K, Kumsawat P, et al. De- tection of Defect in Textile Fabrics Using Optimal Gabor Wavelet Network and Two-dimensional PCA[C]// Ad- vances in Visual Computing. Heidelberg: Springer-ver- lag, 2011:436-445.
  • 5Tolba A S. Fast Defect Detection in Homogeneous Flat Surface Products[J]. Expert Systems with Applications an International Journal, 2011, 38(10) :12339-12347.
  • 6Cohen F S, Fan Z, Attali S. Automated Inspection of Textile Fabrics Using Textural Models[J]. IEEE Trans- actions on Pattern Analysis & Machine Intelligence, 1991, 13(8) :803-808.
  • 7Hou X D, Zhang L Q. Saliency Detection: A Spectral Residual Approach[C]//2007 IEEE Conference on Com- puter Vision and Pattern Recognition IEEE. Washing- ton:IEEE Computer Society, 2007: 1-8.
  • 8Murray N, Vanrell M, Otazu X, et al. Saliency Estima- tion Using a Non-parametric Low-level Vision Model [C]//IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2011 : 433-440.
  • 9Wang W, Cai D, Xu X, et al. Visual Saliency Detection based on Region Descriptors and Prior Knowledge [J]. Signal Processing Image Communication, 2014, 29 (3) : 424-433.
  • 10刘洲峰,赵全军,李春雷,董燕,闫磊.基于纹理结构异常的织物疵点检测算法研究[J].中原工学院学报,2014,25(3):22-25. 被引量:3

二级参考文献53

  • 1D L Donoho,M Elad,V Temlyakov.Stable recovery of sparse overcomplete representations in the presence of noise[J].IEEE Trans on Information Theory,2006,52(1):6-18.
  • 2N Mourad,J P Reilly.Direction-of-arrival estimation using a mixed L2,0 norm approximation[J].IEEE Transactions on Signal Processing,2010,58(9):4646-4655.
  • 3M M Hyder,K Mahata.Coherent spectral analysis of asynchronously sampled signals[J].IEEE Signal Processing Letters,2011,18(2):126-129.
  • 4D L Donoho.Compressed sensing[J].IEEE Trans on Information Theory,2006,52(4):1289-1306.
  • 5S Chen,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].SIAM J Sci Comput,1999,20(1):33-61.
  • 6P Rodríguez,B Wohlberg.An iterative reweighted norm algorithm for total variation regularization[J].IEEE Signal Processing Letters,2007,14(12):948-951.
  • 7H Mohimani,M Zadeh,C Jutten.A fast approach for overcomplete sparse decomposition based on smothed L0 norm[J].IEEE Transactions on Signal Processing,2009,57(1):289-301.
  • 8M Hyder,K Mahata.An improved smoothed L0 approximation algorithm for sparse representation[J].IEEE Transactions on Signal Processing,2010,58(4):2194-2205.
  • 9J Tropp,A Gilbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans Inf Theory,2007,53(12):4655-4666.
  • 10D Needell,R Vershynin.Signal recovery from incomeplete and inaccurate measurements via regularized orthogonal matching pursuit[J].IEEE J Sel Topics Signal Process,2010,4(2):310-316.

共引文献43

同被引文献34

  • 1郝钢,李云,关琳琳,邓自立.自校正信息融合Wiener反卷积滤波器[J].科学技术与工程,2006,6(8):917-921. 被引量:1
  • 2Donoho D L. Compressed Sensing[J]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-- 1306.
  • 3Cand~s E. Compressive Sampling[C]//Proceedings of In- ternational Congress of Mathematicians Madrid. Spain: European Mathematical Society Publishing House, 2006 : 1433--1452.
  • 4Cand~s E, Romberg J, Tao T. Robust Uncertainty Prin- ciples: Exact Signal Reconstruction from Highly Incom- plete Frequency Information[J]. IEEE Transactions on Information Theory, 2006, 52(2) :489--509.
  • 5Gilbert A C, Guha S, Indyk P, et al. Near-optimal Sparse Fourier Representations Via Sampling[C]// Proceedings on 34th Annual ACM Symposium on Theory of Computing. Canada:ACM, 2012 : 152-- 161.
  • 6Ji S, Xue Y, Carin L. Bayesian Compressive Sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346--2356.
  • 7Cand6s E, Braun N, Wakin M. Sparse Signal and Image Recovery from Compressive Samples[C]//Proceedings of 4th IEEE International Symposium on Biomedical Ima- ging: from Nano to Macro. Washington: IEEEE, 2007: 976--979.
  • 8Lou Y, Yin P, He Q, et al. Computing Sparse Repre- sentation in a Highly Coherent Dictionary Based on Difference of L1 and L2 [J]. Journal of Scientific Compu ting, 2015, 64(1) :178--196.
  • 9Chartrand R. Exact Reconstruction of Sparse Signals Via Nonconvex Minimization [J]. IEEE Signal Processing Letters, 2007, 14(10):707--710.
  • 10Mohimani H, Babaiezadeh M, Jutten C. A Fast Ap- proach for Overcomplete Sparse Decomposition Based on Smoothed L0 Norm[J]. IEEE Transactions on Sig- nal Processing, 2009, 57(1):289--301.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部