期刊文献+

基于异常评分行为分析的虚假评论商品识别方法 被引量:4

A Method for Identifying Target Products with Fake Comments Based on Abnormal Rating Behavior Analysis
下载PDF
导出
摘要 在电商平台的所有评论信息中检测虚假评论时,评论领域的多样性以及虚假评论的总体稀疏性会导致识别准确率的下降。如果首先识别出包含虚假评论的商品,再对其中的评论进行针对性检测,会大大提高识别的效率和准确性。本文提出了一种基于异常评分行为分析的虚假评论商品识别方法,在对虚假评论行为分析的基础上,采用正态分布拟合和时序数据突变点检测方法,实现对虚假评论的发现。实验结果表明,该方法可以有效地识别虚假评论目标商品。 The diversity of the product field and the overall sparsity of the fake comments will lead to the recognition accuracy decline when detecting the fake comments by directly processing all the comments on the business platform. So the identification of the target product with fake comments will greatly improve the efficiency and accuracy of recognition. To this end, an abnormal rating behavior identification method is presented to identify the target products. Based on the analysis of the fake comments, using the normal distribution fitting and the abrupt point detection of the time sequence data, the discovery of the target products is realized. Experimental results show that the proposed method can effectively identify the target products with fake comments.
作者 焦易于 刘刚
出处 《中原工学院学报》 CAS 2015年第6期80-84,共5页 Journal of Zhongyuan University of Technology
关键词 虚假评论 异常评分行为 正态分布拟合 时序数据突变点检测 fake comments abnormal rating behavior normal distribution fitting abrupt point detectionof the time sequence data
  • 相关文献

参考文献9

  • 1Wang G, Xie S, Liu B, et al. Review Graph Based On- line Store Review Spammer Detection [C]//2011 IEEE llth International Conference on Data Mining. Piscat- away: IEEE Press, 2011: 1242-1247.
  • 2Xie S, Wang G, Lin S, et al. Review Spare Detection via Temporal Pattern Diseovery[C]//Proceedings of the 18th ACM Sigkdd International Conference on Knowledge Dis- covery and Data mining. Texas: ACM, 2012: 823-831.
  • 3Jindal N, Liu B. Review Spare Detection[C]//Proceed- ings of the 16th International Conference on World Wide Web. Texas: ACM, 2007: 1189-1190.
  • 4Ott M, Cardie C, Hancock J T. Negative Deceptive O- pinion Spam[C]// The 2013 Conference of the North A- merican Chapter of the Association for Computational Linguistics: Human Language Technologies. Atlanta.. NAACL, 2013: 497-501.
  • 5Ott M, Choi Y, Cardie C, et al. Finding Deceptive Opinion Spare by any Stretch of the Imagination[EB/OL]. (2012- 04- 04) [2015 - 05 - 04]. http://www, docin, eom/p - 376055993. html.
  • 6Xu Q, Zhao H. Using Deep Linguistic Features for Find- ing Deceptive Opinion Spam[C]// The 24th International Conference on Computational Linguistics. Mumbai: COLING, 2012.. 1341-1350.
  • 7Herndndez D, Guzmdn R, Mbntesy G M, et al. Using PU-learning to Detect Deceptive Opinion Spare [C]// Proc. of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Atlanta: Medicine, 2013: 38-45.
  • 8Hamouda A, Rohaim M. Reviews Classification Using Sentiwordnet Lexicon[C]//World Congress on Computer Science and Information Technology. Cairo: INFOMESR, 2011 :120-123.
  • 9Ohana B, Tierney B. Sentiment Classification of Reviews u- sing Sentiwordnet [C]//Proceedings of 9th Information Technologyb-Teleconununications Conference. Dublin: Dub- lin Institute of Technology, 2009: 13.

同被引文献36

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部