期刊文献+

单输入多输出水声信道的联合稀疏恢复估计 被引量:1

Joint Sparse Recovery Estimation of Underwater Acoustic Single-input-multiple-output Channels
下载PDF
导出
摘要 单输入多输出(SIMO)水声通信系统可利用空间分集获取性能增益,考虑到水声信道垂直相关半径通常大于SIMO接收阵的阵元间距,因此各个SIMO信道响应的多径稀疏结构具有较强的相关性。利用SIMO信道间存在的稀疏相关性,提出分布式压缩感知(CS)框架的SIMO水声信道联合稀疏恢复估计算法,与传统CS信道估计方法只利用信道自身稀疏性相比,联合稀疏恢复估计方法可进一步利用信道间多径结构的相关性提高稀疏重构性能。仿真和海试SIMO水声通信实验表明:与传统估计方法相比,利用多通道联合稀疏恢复可有效提高SIMO信道估计性能,特别是可获取较低信噪比条件下的性能改善。 Underwater single-input-muhiple-output (SIMO) system enables the exploitation of space diversity to achieve performance enhancement. Considering that the vertical correlation radius of underwater channels is usually larger than the distance between array elements, the sparse structures of SIMO channels response exhibit considerable correlation feature. A channel estimation algorithm under the framework of distributed compressed sensing(CS) is presented to perform the joint sparse recovery estimation of SIMO channel via simultaneous orthogonal matching pursuit (OMP). Compared with the traditional CS channel estimation algorithms which only exploit the sparsity of single channel, the proposed algorithm is capable of employing the joint sparse correlation of SIMO channels to improve the performance of SIMO channel estimation. The simulation and field experimental results show that the proposed algorithm effec- tively improves the performance of SIMO channel estimation in terms of estimation accuracy and communi- cation quality, especially under low signal-noise ratio.
出处 《兵工学报》 EI CAS CSCD 北大核心 2015年第12期2321-2329,共9页 Acta Armamentarii
基金 国家自然科学基金项目(11274259) 教育部高等学校博士学科点专项项目(20120121110030)
关键词 声学 单输入多输出 联合稀疏恢复 分布式压缩感知 水声信道估计 acoustics single-input-multiple-output joint sparse recovery distributed compressed sens- ing underwater acoustic channel estimation
  • 相关文献

参考文献9

二级参考文献141

  • 1曾立,李斌,阎蕊.RAKE接收在水声通信中的应用[J].声学技术,2003,22(z2):221-223. 被引量:1
  • 2郭良辉,孟小红,郭志宏,刘国峰,常君勇,于更新.地球物理不规则分布数据的空间网格化法[J].物探与化探,2005,29(5):438-442. 被引量:22
  • 3刘胜兴,许肖梅.浅海水声信道中Turbo码性能研究[J].厦门大学学报(自然科学版),2006,45(5):656-659. 被引量:3
  • 4DONOHO D. Compressed sensing [ J ]. IEEE Trans on Information Theory,2006,52 (4) :1289 - 1306.
  • 5CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory,2006,52 (2) :489 - 509.
  • 6TROPP J, GILBERT A. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans on Information Theory,2007,53 ( 12 ) :4655 - 4666.
  • 7CANDES E,ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Comm Pure and Appl Math,2006,59 : 1207 - 1223.
  • 8CHARTRAND R. Nonconvex compressed sensing and error correction[ C ]//Acoustics, Speech and Signal Processing ( ICASSP). Hawaii, USA ,2007:889 - 892.
  • 9ELAD M. Optimized Projections for Compressed Sensing [ J ]. IEEE Trans on Signal Processing,2007,55 (12 ) :5695 -5702.
  • 10LUSTIG M, SANTOS J M. Application of compressed sensing for rapid MR imaging[ J ]. Magn Reson Med ,2007,58 : 1182 - 1195.

共引文献75

同被引文献5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部