期刊文献+

金属卤化物对4MgH_2/TiH_2复合材料储氢性能的影响

Study on the Effect of Metal Halides on Hydrogen Storage Properties of 4MgH_2/TiH_2 Composites
下载PDF
导出
摘要 在氢气保护下,采用机械合金化制备4MgH_2/TiH_2以及4MgH_2/TiH_2+5%A(质量分数,A=AlCl_3,LaCl_3,CeCl_3)复合材料,并通过PCT、XRD、SEM以及DTA等手段对复合材料进行表征。结果显示,4MgH_2/TiH_2以及4MgH_2/TiH_2+5A(A=AlCl_3,LaCl_3,CeCl_3)复合材料吸氢量均在4.5%(质量分数)左右,且在150s时间内吸氢即可达到饱和。添加CeCl_3后,复合材料的脱氢反应焓从添加前的72.7kJ/mol下降到65.1kJ/mol,而添加AlCl_3和LaCl_3后,复合材料的脱氢反应焓则分别增加到80.6kJ/mol和82.5kJ/mol。这表明CeCl_3能有效提高4MgH_2/TiH_2复合材料的热力学性能,而AlCl_3和LaCl_3的添加则会导致4MgH_2/TiH_2复合材料的热力学性能下降。 The 4MgH2/TiH2 and 4MgH2/TiH2 +5wt. %A(A= AlCl3 , LaCl3, CeCl3 ) composites were prepared by mechanical alloying under the argon atmosphere protection, and the hydrogen performance were investigated by PCT, XRD, SEM and DTA methods. The results showed that the maximum hydrogen capacity of the four samples were all about 4. 5wt%, and the hydrogen capacity could reach to the saturation within 150 seconds in the hydrogen absorption process. The dehydrogenation enthalpy for the 4 MgH2/TiH2 composite was 72. 7 kJ/mol, and it de- creased to 65.1 kJ/mol when adding CeCl3. However, it increased to 80. 6 kJ/mol and to 82. 5 kJ/mol while adding AlCl3 and LaCl3, respectively. It can be inferred that the thermodynamic property of the 4MgH2/TiH2 composite can be improved by adding CeCl3. Unfortunately, its thermodynamic property get worse while adding AlCl3 and LaCl3.
出处 《材料导报》 EI CAS CSCD 北大核心 2016年第2期76-80,共5页 Materials Reports
基金 广西自然科学基金资助研究项目(2014GXNSFAA118346) 广西教育厅基金项目(2013YB006) 广西大学科研基金项目(XBZ120574)
关键词 复合材料 储氢性能 金属卤化物 composite hydrogen storage performance metal halides
  • 相关文献

参考文献25

  • 1Gennari F C. Esquivel M R. Structural characterization and hydro?gen sorption properties of nanocrystalline Mg2 Ni [J]. J Alloys Compd.2008.459(1-2):425.
  • 2Polanski M. Bystrzycki J. Plocinski T. The effect of milling condi?tions on microstructure and hydrogen absorption/desorption proper?ties of magnesium hydride (Mgl-Ij ) without and with Cr203 nano?particles[J]. Int J Hydrogen Energy. 2008.33 (7) : 1859.
  • 3Varin R A. Czujko T. Chiu C. et al. Particle size effects on the de?sorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM) [J]. J Alloys Compd , 2006.4240-2): 356.
  • 4Kwon S. Baek S. Mumm D R. et al. Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni. Fe and Ti[l]. Tnt J Hydrogen Energy.2008.33(7) :4586.
  • 5Bobet J L. Akiba E. Darriet B. Study of Mg-M (M=Co. Ni and Fe) mixture elaborated by reactive mechanical alloying: Hydrogen sorption properties[J]. Int J Hydrogen Energy. 2001, 26(5) :493.
  • 6Czujko T. Varin R A, Chiu C. et al. Investigation of the hydrogen desorption properties of Mg-l-Lowt. %X (X=V. Y. Zr) submicro?crystalline composites[J]. J Alloys Compd , 2006,414(1-2) : 240.
  • 7Song MY. K won S N. et al. Improvement in the hydrogen storage properties of Mg by mechanical grinding with Ni, Fe and V under H2 atmosphere[J]. Int J Hydrogen Energy. 2011. 36(21) : 13587.
  • 8Pei P. Song X. Liu J, et al. Study on the hydrogen desorption mechanism of a Mg- V composite prepared by SPS[J]. Int J Hydro?gen Energy.2012.37(1):984.
  • 9Song M. Kwon S. et al. Improvement of hydrogen-sorption charac?teristics of Mg by reactive mechanical grinding with prepared by spray conversion[J]. Int J Hydrogen Energy. 2006.31(5) : 2284.
  • 10Song M. Kwon I. Bae J S. Development of hydrogen-storage alloys of Mg-system by reactive mechanical grinding [J]. Tnt J Hydrogen Energy.2005,30(10):1107.

二级参考文献77

  • 1周惦武,刘金水,张健,彭平.MgH_2-X(X=Si,Ge,Sn,Pb)体系解氢能力的第一原理计算[J].湖南大学学报(自然科学版),2006,33(6):85-89. 被引量:1
  • 2Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride- materials for solid hydrogen storage[J]. Int J Hydrogen Energy, 2007,32(9) : 1121.
  • 3Zaluska A, Zaluski I., Strom-Olsen J O. Nanocrystalline- magnesium for hydrogen storage[J]. J Alloys Compd, 1999, 288(1-2) :217.
  • 4Varin R A, Czujko T,et al. Particle size effects on the de sorption properties nanostructures magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milI- ing (CRMM)[J]. J Alloys Compd, 2006,424(1-2) :356.
  • 5Varin R A, Czujko T, Wronski Z. Particle size, grain size and g-MgH2 effectsonthe desorption properties of nanoerys- tallinecommercial magnesiumhydride processed by controlled mechanical milling[J]. Nanoteehnology, 2006,17 : 3856.
  • 6Huot J, I.iang G, Sehulz R. Mechanically alloyed metal hy- dride systems[J]. Appl Phys A, 2001,72 (2): 187.
  • 7Liang G, Huot J, Boily S, et al. Catalytic effect of transi- tion metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm -Ti, V, Mn, Fe and Ni) systems [J]. J Alloys Compd,1999,292(1 2):247.
  • 8Yang W N, Shang C X, Ouo Z X. Site density effect of Ni particles on hydrogen desorption of MgH2[J]. lnt J Hydro- gen Energy,2010,35(10) :4534.
  • 9Liang G, Huot J, Boily S, et al. Hydrogen storage proper- ties of the mechanically milled MgH2-V nanocomposite[J]. J Alloys Compd, 1999,291(1-2) : 295.
  • 10Xie L, Liu Y, Wang Y T, et al. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF2[J]. Acta Mater, 2007,55 (13) : 4585.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部