期刊文献+

Fe掺杂LiMnPO_4/C的制备和电化学性能

Synthesis and Electrochemical Performance of LiMnPO_4/C with Fe Ion Dopant
原文传递
导出
摘要 以酚醛树脂作为还原剂和碳源,采用固相法在Li Mn PO4晶格中引入铁离子制备了Li Fe_xMn_(1-x)PO_4/C复合材料。考察了掺铁量、煅烧温度和煅烧时间对材料电化学性能的影响。结果表明,制备的Li Fe_xMn_(1-x)PO_4/C为纯度较高的橄榄石型相,具有类球形形貌,颗粒尺寸300~500 nm,且分布均匀。循环充放电测试结果表明,随着掺铁量的增加,Fe^(2+)/Fe^(3+)和Mn^(3+)/Mn^(2+)氧化还原电位处的平台容量分别相应地升高和下降。其中600℃煅烧10 h制得的Li Fe0.5Mn0.5PO4/C样品具有较好的电化学性能:0.1 C倍率首次放电容量为147.3 m Ah/g;2 C倍率循环100次后,放电容量从115.2 m Ah/g降至112.7 m Ah/g,容量保持率为97.8%;10 C倍率循环200次后,容量保持率仍有89.6%。 A series of Li FexMn1-xPO4/C composite materials was synthesized using a solid-state reaction method, and Fe ion was doped into crystalline of Li Mn PO4 for the improvement of electrochemical performance. The phenolic resin was added as the reducing agent and carbon sources. The effect of Fe-to-Mn ratio, calcination temperature and calcination time on the electrochemical performance was investigated. Results reveal that Li FexMn1-xPO4/C has an order olivine structure and high purity. Samples have the similarly spherical morphology with particle size of 300500 nm and uniform distribution. The outcomes of charge-discharge measurement show that the capacity at the voltage plateaus due to the Fe2+/Fe3+ and Mn3+/Mn2+ redox groups increases and decreases, respectively, with Fe content increasing, and the Li Fe0.5Mn0.5PO4/C sample calcined at 600 oC for 10 h exhibits higher capacity and better rate-cycling performance, including the first discharge capacity 147.3 m Ah/g at 0.1 C, the discharge capacity of 115.2 m Ah/g decreasing to 112.7 m Ah/g at 2C as well as the capacity retention rate 97.8% after 100 cycles and the capacity retention rate 89.6% after 200 cycles at 10 C.
机构地区 大连理工大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第1期207-211,共5页 Rare Metal Materials and Engineering
基金 大连市科技计划(2013A15GX048) 国家自然科学基金(21376035)
关键词 LiMn PO4/C 固相反应 铁离子掺杂 酚醛树脂 LiMn PO4/C solid-state reaction Fe ion doping phenolic resin
  • 相关文献

参考文献14

  • 1Padhi A, Nanjundaswamy K, Goodenough J. Journal of the Electrochemical Societym, 1997,144(4): 1188.
  • 2刘洪权,郑田田,郭倩颖,陈蕴博,谷亦杰.锂离子电池正极材料磷酸铁锂研究进展[J].稀有金属材料与工程,2012,41(4):748-752. 被引量:18
  • 3朱彦荣,谢颖,伊廷锋,曾媛苑,诸荣孙.锂离子电池正极材料LiMnPO4的电子结构[J].无机化学学报,2013,29(3):523-527. 被引量:4
  • 4刘学武,李新,邓远富,施志聪,陈国华.金属镁掺杂的LiMnPO_4/C的电化学性能研究[J].功能材料,2013,44(10):1381-1384. 被引量:5
  • 5Drezen T,Kwon N,Bowen P et al. Journal of Power Sources [J]. 2007, 174(2): 949.
  • 6Kim J, Park K,Park I et al. Journal of the Electrochemical Society[J]. 2012, 159(1): 55.
  • 7Bramnik N, Ehrenberg H. Journal of Alloys and Compounds[J].2008, 464(1-2):259.
  • 8Kumar P, Venkateswarlu M, Misra M et al. Journal of the Electrochemical Society[J].2011,158(3): 227.
  • 9Zhang B, Wang X J, Li H et al. Journal of Power Sources[J]. 2011,196(16): 6992.
  • 10Hong J, Wang F, Wang X et al. Journal of Power Sources[J].2011, 196(7): 3659.

二级参考文献92

  • 1常晓燕,王志兴,李新海,匡琼,彭文杰,郭华军,张云河.锂离子电池正极材料LiMnPO_4的合成与性能[J].物理化学学报,2004,20(10):1249-1252. 被引量:15
  • 2Pahdi A K,Najundaswamy K S,Goodenough J B.J Electrochem Soc[J],1997,144:1188.
  • 3Akimoto J,Gotoh Y,Oosawa Y.J Solid State Chem[J],1998,141:298.
  • 4Padhi A K,Nanjundaswamy K S,Masquelier C et al.J Electrochem Soc[J],1997,144:1609.
  • 5Meethong N,Hua Kao Y,Speakman S A et al.Adv Funct Mater[J],2009,19:1060.
  • 6Chung S Y,Bloking J T,Chiang Y M.Nat Mater[J],2002,1:123.
  • 7Ravet N,Abouimrane A,Armand M.Nat Mater[J],2003,2:702.
  • 8Islam M S,Driscoll D J,Fisher C A J et al.Chem Mater[J],2005,17:5085.
  • 9Konarova M,Taniguchi I.J Power Sources[J],2010,195:3661.
  • 10Liu J,Liu F,Yang G et al.Electrochimica Acta[J],2010,55:1067.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部