期刊文献+

用Shannon熵度量两个数据集的一致性 被引量:1

Measuring Consistency of Two Datasets Using Shannon Entropy
下载PDF
导出
摘要 粗糙集理论的基本思想是根据已知数据自身的不可分辨关系,通过一对近似算子,对某一给定概念进行近似表示。这种思想被应用在研究一个数据集对于另一个数据集的分类一致性上。提出了一种测量两个数据集一致性的新方法,并用Shannon熵定义了分类一致性。考虑到不同数据临近关系的影响,引入了模糊概念将测量对象由清晰分类转化为模糊分类,进而构造了一个广义的一致性度量,这种方法可以产生稳定的可判结果,有效地阻止建模技术中常出现的"黑箱"现象。 The basic idea of rough set theory is based on an indiscernibility relation,and through a pair of approximate operators,it can approximatively represent a given concept.It is used in the study of a data set for classification consistency to another data set.This paper presented a new approach to measure consistency degree of two datasets,and defined classification consistency by Shannon entropy.Taking the influence of neighborhood relations of different data into account,ageneral consistency measure was defined by introducing the expert knowledge into a fuzzy inference system,then we constructed a consistent generalized metric.Moreover,this method can prevent the"black box "phenomenon encountered in many modeling techniques and produce robust and interpretable results.
出处 《计算机科学》 CSCD 北大核心 2016年第1期61-63,80,共4页 Computer Science
基金 国家自然科学基金(61170107 61300153 61300121 61573127 61502144) 河北省高校创新团队领军人才培育计划项目(LJRC022) 河北省自然科学基金(A2014205157 A2013208175)资助
关键词 一致性程度 不可辨识关系 模糊划分 Shannon熵 Consistency degree Indiscernibility relation Fuzzy partition Shannon entrop
  • 相关文献

参考文献14

  • 1Agresti A, Finlay B. Statistical Methods for the Social Sciences (third edition) [M]. Prentice Hall, New Jersey, 1997.
  • 2Chen C B, Wang L Y. Rough set-based clusing with refinement using Shannon' s entropy theory[J]. Computer, Mathematicswith Applications, 2006,52(10/11) : 1563-1576.
  • 3Dubois D,Prade H, Yager R R. Fuzzy Information Engineering: A Guide Tour of Application[M]. Wiley, New York, 1997.
  • 4Hollins M, Faldowski R, Rao S, et al. Perceptual dimensions of tactile surface texture: a multidimensional scaling analysis[J]. Perception and Psychophys, 1997,54 (6) : 697-705.
  • 5Jolliffe I T. Principal Component Analysis(2rd edition)[M]. In- formation Publishier Science, New York, 2002.
  • 6Le Dien S. Hierarchical multiple factoranalysis: application to the comparison of sensory profiles[J]. Food Quality Preference, 2003,14(5/6) : 397-403.
  • 7Pawlak Z. Rough sets[J]. International Journal Computer and Information Sciences, 1982,11 (5) ; 341-356.
  • 8Pawlak Z. Rough set theory and its applications in data analysis [J]. Cybernet System, 1998,29(7) : 661-688.
  • 9Polkowski L, Skowron A. Rough mereology and analytical mor- phology: new developments in rough set Theory[C]//De Glass M,Pawlak Z. eds. Proceedings of WOCFAI-95, Second World Conference on Fundamntals of Artificial Intelligence. Angkor, Paris, 1995 : 343-354.
  • 10Qian Y H, Liang J Y,Dang C Y. Consistency measure, inclusion degree and fuzzy measure in decision tables[J]. Fuzzy Sets and Systems, 2008,159 (18) : 2353-2377.

二级参考文献8

  • 1Ma Z, Zhang W, Ma W. Assessment of data redundancy in fuzzy relational databases based on semantic inclusion degree[J]. Information Processing Letters, 1999,72 : 25-29.
  • 2Zhang H Y,Zhang W X. Hybrid monotonic inclusure and its use in measuring similarity and distance between fuzzy sets[J].Fuzzy Sets and Systems, 2009,160 : 107-118.
  • 3Zhou L, Wu W Z. On generalized intuitionistic fuzzy rough approximation operators[J]. Information Sciences, 2008,178 (11) : 2448-2465.
  • 4Atanassov K. Intuitionistic Fuzzy Sets:Theory and Applications[M]. Heidelberg : Physica-Verlag, 1999.
  • 5Belohlavek R. Fuzzy Relational Systems: Foundations and Principles[M]. New York:Kluwer Aeademie, Plenum Publishers, 2002.
  • 6徐章艳.基于Vague集的近似推理[D].广西:广西师范大学,2004.
  • 7Li D F,Cheng C. New similarity measures of intuitionistic fuzzy sets and application to pattern reeognition[J].Pattern Recognition Letters, 2002,23 : 221-225.
  • 8Hong D H, Kim C. A note on similarity measures between vague sets and bewteen elements[J].Information Sciences, 1999,115 : 83-96.

共引文献3

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部