期刊文献+

多特征层次化答案质量评价方法研究 被引量:2

Research on Multi-features Hierarchical Answer Quality Evaluation Method
下载PDF
导出
摘要 社交媒体中的问答对可以为自动问答系统提供答案,但有些答案的质量不高,因此答案质量评价方法具有研究价值。已有的评价方法没有考虑问题类别特征,对不同类型的问题采用统一的评价方法。因此提出了一个层次分类模型。首先分析问题类型;然后提取文本、非文本、语言翻译性、答案中的链接数4类特征,依据特征分类影响力随问题类型不同而不同这一客观现象,采用逻辑回归算法对各类型问题的答案质量进行评价,取得了较好的实验效果;最后分析了影响各类问题答案质量的主要特征。 Social media question-answer pairs can provide the answer to the automatic question and answering system,but the quality about some of the answers is not so high.So the evaluation method of answer quality has the research value.The existing evaluation methods without considering the problem of question types feature use the uniform evaluation method for different question types.This paper presented a hierarchical classification model.Firstly we analyzed the types of question,and then extracted four features of text,non-text,language translation,number of links in the answer.According to this objective phenomenon that the influence of feature classification varies with the types of different questions,we used logistic regression algorithm to evaluate various types of answer quality based on these features,achieving good results.Finally the main features that influence the anawer quality of all kinds of questions were analyzed.
出处 《计算机科学》 CSCD 北大核心 2016年第1期94-97,102,共5页 Computer Science
基金 武汉大学软件工程国家重点实验室开放课题项目(SKLSE2012-09-30) 山西省自然科(2013011015-2)资助
关键词 层次分类模型 问题类别 答案质量评价 特征分析 Hierarchical classification model Question types Answer quality evaluation Feature analysis
  • 相关文献

参考文献11

  • 1Berger A,Della Petra S, Della Pietra V J. A maximum entropy approach to natural language processing[J]. Computational Lin- guistics, 1996,22 (1) : 39-71.
  • 2Hwang J N, Lay S R, Lippman A. Nonparametric multivariate density estimation..A comparative study[J]. IEEE Transactions of Signal Processing, 1994,42 (10) : 2795-2810.
  • 3Zhu Z, Bernhard D, Gurevych I. A Multi-Dimensional model for assessing the quality of answers in social QA sltes[R]. Teeh- nische Universitt UKP Lab,2009.
  • 4刘高军,马砚忠,段建勇.社区问答系统中“问答对”的质量评价[J].北方工业大学学报,2012,24(3):31-36. 被引量:8
  • 5Li S G, Manandhar So Improving question recommendation by exploiting information need[C]//Proceedings of the 49th Annu- al Meeting of the Association for Computational Lin-guistics. Portland, Oregon: ACL, 2011 : 1425-1434.
  • 6Figueroa A, Neumann G. Category-specific models for ranking effective paraphrase in community Question Answering[J]. Ex- pert System With Applications, 2014,41 (10) : 4730-4742.
  • 7Wang B X, Liu B Q, Wang X L, et al. Deep learning approaches to semantic relevance modeling for Chinese question-answer pairs[J]. ACM Transactions on Asian Language Information Processing, 2011,10(4) : 1-16.
  • 8李晨,巢文涵,陈小明,李舟军.中文社区问答中问题答案质量评价和预测[J].计算机科学,2011,38(6):230-236. 被引量:27
  • 9文勖,张宇,刘挺,马金山.基于句法结构分析的中文问题分类[J].中文信息学报,2006,20(2):33-39. 被引量:82
  • 10孔维泽,刘奕群,张敏,马少平.问答社区中回答质量的评价方法研究[J].中文信息学报,2011,25(1):3-8. 被引量:33

二级参考文献72

  • 1张宇,刘挺,文勖.基于改进贝叶斯模型的问题分类[J].中文信息学报,2005,19(2):100-105. 被引量:47
  • 2张亮,王树梅,黄河燕,张孝飞.面向中文问答系统的问句句法分析[J].山东大学学报(理学版),2006,41(3):85-88. 被引量:5
  • 3张仰森,曹元大,俞士汶.基于规则与统计相结合的中文文本自动查错模型与算法[J].中文信息学报,2006,20(4):1-7. 被引量:34
  • 4VladimirN Vapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.1-125.
  • 5百度公司,中国人知识搜索行为研究报告[EB/OL].2007年7月11日.(http://cimg3.163.com/tech/school/other/chinasearch.pdf).
  • 6J. Jeon, W. Croft, and J. Lee. Finding similar questions in large question and answer archives[C]//Proceedings of CIKM, 2005.
  • 7Q. Su, D. Pavlov, J. Chow, and W. Baker. Internetscale collection of human-reviewed data[C]//Proceedings of the 16th international conference on World Wide Web, 2007.
  • 8J. Jeon, W. Croft, and etc. A framework to predict the quality of answers with non textual features[C]// Proceedings of SIGIR, 2006.
  • 9E. Agichtein, C. Castillo, and etc. Finding high-qual ity content in social media[C]//Proceedings of SIGIR, 2008.
  • 10Y. Liu, J. Bian, and E. Agichtein. Predicting information seeker satisfaction in community question answering[C]//Proceedings of SIGIR, 2008.

共引文献126

同被引文献16

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部