期刊文献+

基于网格索引的时空轨迹伴随模式挖掘算法 被引量:8

Algorithm for Mining Adjoint Pattern of Spatial-Temporal Trajectory Based on Grid Index
下载PDF
导出
摘要 时空轨迹伴随模式是数据挖掘领域的一项重要研究内容。CMC(Coherent Moving Cluster)算法是一种经典的时空轨迹伴随模式挖掘算法,该算法引入了DBSCAN算法以挖掘出任意形状的簇。但是,DBSCAN聚类算法极耗时,导致CMC算法的时间效率较低。因此提出了一种基于网格索引的时空轨迹伴随模式挖掘算法MAP-G(Mining Adjoint Pattern of spatial-temporal trajectory based on the Grid index)。实验表明,MAP-G算法不仅比CMC算法具有更高的时间效率,而且能够过滤掉部分不正确的结果,因此结果也更加准确。 In the field of data mining,adjoint pattern of spatial-temporal trajectory is an important research direction.CMC(Coherent Moving Cluster)algorithm is a classical algorithm for mining adjoint pattern,and it is applied to mine clusters of arbitrary shape.However,it reduces the efficiency of the algorithm.We presented an algorithm for mining adjoint pattern of spatial-temporal trajectory called MAP-G(Mining Adjoint Pattern of spatial-temporal trajectory based on the Grid index).The experimental results demonstrate that the proposed algorithm is more efficient compared to the CMC algorithm,and the accuracy is higher as our algorithm can filter some wrong results.
出处 《计算机科学》 CSCD 北大核心 2016年第1期107-110,共4页 Computer Science
基金 国家自然科学基金项目(41471371)资助
关键词 伴随模式 时空轨迹挖掘 网格索引 Adjoint pattern Mining of spatial-temporal trajectory Grid index
  • 相关文献

参考文献12

  • 1Benkert M, Oudmundsson J, Htibner F, et al. Reporting flock pattems[J]. Computational Geometry, 2008,41 (3) : 111-125.
  • 2Jeung H,Shen H T, Zhou X. Convoy queries in spatictemporal databases[C]//24th International Conference on Data Enginee- ring(ICDE). IEEE, 2008 : 1457-1459.
  • 3Jeung H,Yiu M L,Zhou X,et al. Discovery of convoys in trajec- tory databases[J]. Proceedings of the VLDB Endowment, 2008, 1(1) : 1068-1080.
  • 4Giannotti F, Nanni M,Pinelli F, et al. Trajectory pattern mining [C]//Proceedings of the 13th ACM SIGKDD International Con- ference on Knowledge Discovery and Data Mining. ACM, 2007: 330-339.
  • 5Li Z, Ding B, Han J, et al. Swarm: Mining relaxed temporal mov- ing object clusters[J]. Proceedings of the VLDB Endowment, 2010,3(1/2) .. 723-734.
  • 6Lauhe P,Imfeld S. Analyzing relative motion within groups of- trackable moving point objects[M]//Geographic Information Science. Springer Berlin Heidelberg. 2002;132-144.
  • 7Kalnis P, Mamoulis N, Bakiras S. On discovering moving clus- ters in spatio-temporal data[M]//Advances in Spatial and Tem- poral Databases. Springer Berlin Heidelberg. 2005:364-381.
  • 8Jeung H,Yiu M L,Zhou X,et al. Discovery of convoys in trajec- tory databases[J]. Proceedings of the VLDB Endowment,2008, 1(1) :1068-1080.
  • 9Tang L A, Zheng Y, Yuan J, et al. On discovery of traveling companions from streaming trajectories[C]//28th International Conference on Data Engineering (ICDE). IEEE,2012:186-197.
  • 10Tang L A, Zheng Y, Yuan J, et al. A framework of traveling companion discovery on trajectory data streams [J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2013,5(1) :992-999.

同被引文献50

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部